

MEng Mechanical Engineering

Lip Recognition Dataset Tool

Demetrios Loizides

May 2020

Dr Tim Dolmansley

Thesis submitted to the University of Sheffield in partial

fulfilment of the requirements for the degree of

 Master of Engineering

Department

Of

Mechanical

Engineering

ii

SUMMARY

 In the recent years we have seen large improvements in the field of

Machine Learning (ML) and Artificial Intelligence (AI). Especially tasks such as face

recognition and Automatic Speech Recognition (ASR)1 have even been developed

up to a commercial scale. Lip Recognition Technology (LRT) hasn’t been developed

as much as other ML technologies. However, ML learning architectures which

implement lip-recognition have been developed, trained and tested on proprietary

or limited usage datasets. The purpose of this report is to tackle this issue by

creating an open source tool (program or pipeline2) which allows users to create

datasets suitable for training ML lip-recognition algorithms. The tool was

developed in python 3 and makes use of youtube-dl and FFmpeg command line

tools. The tool consists of a series of functions which work sequentially to extract

and process Audio-Visual (AV) content primarily from the largest available source

online (YouTube). Various options have been developed allowing the customisation

of the dataset. Simultaneously the range of available options and the tools

functional design make it compatible with both online and local media sources. The

tool was tested to work on Ubuntu 19.4 and python 3.7.7 in the anaconda

environment and contains all the necessary features to develop a suitable dataset.

Further work should focus on optimising the performance and including additional

features such as alignment of speech to text.

1 ASR word error rate (WER) of 5.1% on Microsoft’s research report, 6.6% on IBMs and 6.7%
on googles (110).
2 A program used to extract and process digital media such as video and audio files for the
purpose of training and testing ML algorithms. Programmes developed for such purposes have
been named pipelines in various researches (9) (2).

iii

NOMENCLATURE

AI Artificial Intelligence

ALR Automatic Lip-Recognition

ASR Automatic Speech Recognition

AV Audio-Visual

BOB Box of Broadcasts

CNN Convolutional Neural Networks

DNN Deep Neural Network

FR Face Recognition

FPS Frames Per Second

HMM Hidden Markov Models

ID Identity

IoT Internet of Things

LR Lip Reading

LRS2 Lip Reading Sentences in the Wild (dataset)

LRS3 Lip Reading Sentences 3 (dataset)

LRT Lip Recognition Technology

LRW Lip Read in the Wild (dataset)

ML Machine Learning

MT Multiple Towers

MVP Minimum Viable Product

OS Operating Systems

P2FA Penn Phonetics Lab Forced Aligner

SR Speech Recognition

UI Uniquely Identify

iv

CONTENTS

Summary .. ii

Nomenclature ... iii

Contents .. iv

Acknowledgements ... vii

1 Background .. 1

1.1 Lip Reading ... 1

1.2 Lip-Reading Datasets .. 2

2 Project Outline ... 2

2.1 Introduction to the Tool .. 2

2.2 Objective .. 3

2.3 Aims .. 3

3 Literature Review ... 4

3.1 Lip Reading .. 4

3.2 Past Studies of Lip-Recognition Technology (LRT) 4

3.3 Lip-Reading Databases ... 6

3.3.1 GRID Corpus & Lombard Grid ... 6

3.3.2 Common Voice .. 7

3.3.3 MIRACL-VC1 .. 7

3.3.4 VivaVoice .. 7

3.3.5 Lip Reading in the Wild (LRW) ... 8

3.3.6 Lip Reading Sentence 2 (LRS2) ... 8

3.3.7 Lip Reading Sentence 3 (LRS3) ... 8

3.4 Pipelines ... 8

3.4.1 LRW (BBC) Pipeline .. 9

3.4.2 LRS2 (BBC) Pipeline ... 9

3.4.3 LRS3 (TED) Pipeline .. 10

3.5 Literature Review Summary .. 10

4 Copyright Exceptions .. 10

4.1 Downloading Content from YouTube ... 12

4.2 Fair Use Conclusions .. 12

5 Ethics .. 12

6 Project selection ... 13

6.1 Design Approach ... 13

6.2 Design Matrix.. 14

6.2.1 Results Breakdown ... 14

7 The Tool .. 15

v

7.1 Coding Principles ... 15

7.2 Introduction .. 16

7.2.1 Brief Design Overview .. 16

7.3 Dependencies .. 17

7.4 Main body Functions Breakdown .. 18

7.4.1 Essential Configurations ... 18

7.4.2 File Generation .. 18

7.4.3 List All Available Download formats ... 19

7.4.4 Downloading YouTube Content .. 21

7.4.5 Convert Audio File ... 21

7.4.6 Convert Video File ... 21

7.4.7 Download Subtitle Formats ... 22

7.4.8 Download Subtitles .. 22

7.4.9 Process Subtitles .. 25

7.4.10 Max Video Length ...27

7.4.11 Replace Special Characters ..27

7.4.12 Save Subtitles ... 28

7.4.13 Chopped Sample Folder .. 28

7.4.14 Slicing ... 29

7.4.15 Final Result Folders ... 31

7.4.16 Final Audio Files .. 31

7.4.17 Remove Audio ... 32

7.4.18 Face Recognition and Cropping ... 32

7.4.19 End Results .. 39

8 Testing .. 44

9 Future Improvements .. 47

10 License .. 48

11 Summary ... 49

12 APPENDIX 1. .. 50

12.1 MIT Licence .. 50

12.2 Future Software Architecture .. 51

12.3 Projects Gant chart .. 52

12.4 Link to Source Code .. 52

12.5 List of Tested URLs ... 52

12.6 Ethical Approval Form ... 53

12.7 Link to FOURCC Codecs .. 53

12.8 Demo File Notice ... 53

12.9 Variable 4 Layer 1 Key-Names Descriptions .. 53

vi

13 References .. 54

vii

ACKNOWLEDGEMENTS

I would like to thank my parents for funding my university studies, my uncle from

whom I have inherited my passion for science and my personal tutor for agreeing

to supervise my self-initiated project.

1

1 BACKGROUND

1.1 Lip Reading

Lip Reading (LR), the task of recognising one’s speech only from the

movement of the lips and the tongue, it is a difficult task for both humans and

machines. Lip Recognition Technology (LRT) has a broad range of potential

applications and uses ranging from the identification of speech from people with

neurological voice disorders to the improvement of Automatic Speech Recognition

(ASR) in noisy environments.

ASR is known as the method of using computer hardware and software to

identify human voice (1). Since 1994 ASR has improved greatly making lip-reading

redundant in many cases. However, there are still many applications where lip-

reading technology could be applied, such as:

 Automatic real time dictation (auto-generated subtitles) of silent films or off-

mic conversations between politicians and celebrities (2).

 Intelligence agencies may make use of the technology for information theft

(spying) or even as a method of biometric identification.

 Law enforcement, in the gathering of evidence through CCTV systems,

smartphones, laptops and various other camera integrated systems.

 Complementary feature of speech recognition (e.g. letters ‘m’ and ‘n’ are

easily confused while they are visually distinct (2)) (3) and assist in automatic

dictation of movies. Companies which provide video calling as a service such

as Facebook, Skype, WhatsApp etc. will also be interested in the technology.

Ultimately lip-recognition may be implemented in the new age driverless cars

to assist speech recognition to recognise the driver’s commands while the

radio plays in the background.

 Medical industry could use the technology to help patients with speaking

disorders who have difficulties hearing and to improve their hearing aids (4).

For instance, it could be used to assist the communication of mute people by

integrating this technology to an Internet of Things (IoT) device.

Despite its many potential applications, LRTs have not improved as greatly as

ASR or Face Recognition (FR). This could be due to two main reasons. Firstly, it is

harder to achieve low error rates due to the many influential factors such as spoken

speed, image resolution, low frame rate, accents, variable light conditions (2) etc.

Secondly, LRT is less researched as there is less demand in comparison to SR. In

addition there is a lack of comprehensive and large enough freely available datasets.

2

1.2 Lip-Reading Datasets

Most research studies in the past have only been able to recognise single

characters mainly with the use of Hidden Markov Models (HMM) (2). This could have

been due to the lack of both computing power and large vocabulary datasets since

the creation of small datasets of digits 0-9 or with alphabetical characters a-z is a

much easier task. It is only in the recent years that we have seen a significant

improvement on LRT where Deep Neural Network (DNN) models have been

implemented to recognise whole words and sentences (2) (5). DNN architectures

such as Convolutional Neural Networks (CNN) require large training datasets in

order to avoid overfitting3 and to become generalised (6). Unfortunately the only

large enough and word rich datasets suitable for lip-reading are Lip Read in the Wild

(LRW) from BBC, Lip Reading Sentences in the Wild (LRS2) again from BBC and Lip

Reading Sentences 3 (LRS3) from TED and TEDx (7). These datasets are available to

be used for non-commercial, academic research purposes only. In order for one to

obtain any of these datasets, a data sharing agreement with BBC research and

development department must be signed. The agreement must be then sent via e-

mail to the BBC (rob.cooper@bbc.co.uk) for confirmation (8). The datasets are not

easily accessible; the procedure of obtaining the datasets requires manual

evaluation of the submitted application which could be a fairly time consuming

process. Since the datasets are made with proprietary content from BBC programs

and TED conferences, requests originating from non-UK based and non-academic

individuals are likely to be rejected as there is no control over the datasets usage

once shared.

2 PROJECT OUTLINE

2.1 Introduction to the Tool

Any individual who would like to research or commercialise LRT, apart from

building their own ML models or use a premade architecture will need to use a

dataset to train and test their model. The purpose of the work conducted was to

create a pipeline program named Tool which would allow individuals to easily create

3 Overfitting is when a model becomes over trained onto a dataset that starts capturing (using)
the noise within the data in its prediction. Since the noise is produced randomly this results to
a reduction in performance (accuracy).

mailto:rob.cooper@bbc.co.uk

3

these datasets. The Tool should be capable of producing datasets suitable for DNN

to be trained and tested on.

The Tool will be mostly useful to researchers who wish to study lip-recognition

or any individual who is interested in the field and would like to create their own

custom dataset. The Tool will be licenced under an open source licence which will

grant the use, modification, copy, sale and redistribution of the Tool to anyone for

free. The Tool will not be developed for the purpose of making a profit. Hence

anyone, regardless of their economical background may make use of the Tool for

personal or commercial purposes.

Three potential approaches for creating the dataset have been considered.

The first approach makes use of freely available sources on the internet such as

YouTube to extract the content (audio, video, subtitles etc.). The second approach

gathers content by recording AV content locally from volunteers using the

computers pre-build camera or any other device. The third and final approach

gathers content through an online application where volunteers can record and

submit content. For the second and third approach the transcript must be prepared

in advance and be presented to the volunteer to read out loud in front of a camera.

All three methods result in a video file of someone’s face speaking and a

transcript file. Since all methods share the same end result, the procedures for

transforming the content into the suitable format were ML algorithms can be

trained are identical.

2.2 Objective

The objective of the project was to create an open source program (Tool)

which will allow anyone to create their own large and comprehensive datasets

suitable for training lip-reading DNN models.

2.3 Aims

The aims of the project were the following:

 Ensure the Tool is developed sufficiently to the point that a lip-reading

dataset can be built.

 Make sure the Tool is capable of collecting AV content either from an

internet source (YouTube), locally or through online volunteers.

 Ensure modularity and adaptability. Hence, the Tool should be easily

adapted to support any of the three methods of collecting AV content.

4

 Ensure millisecond video splitting accuracy and there for the ability to

produce video segments each containing a single word or whole

sentence instances4.

 Ability to separate the audio from the video and hence create pure audio

and pure video datasets which could be used for ASR and Automatic Lip-

Recognition (ALR).

 Include some intelligence in the Tool, such as face recognition, in order

to assist in the identification of the useful content (a talking head) in the

video.

 Extract useful features such as the change in position of facial land mark

positions.

3 LITERATURE REVIEW

3.1 Lip Reading

Lip reading is a very difficult task for both humans and machines (9).

According to a research study conducted in 1982 hearing impaired people have

shown a 17% accuracy for a short range of only 30 monosyllabic words (9).

Unfortunately, due to homophemes5 letters such as ‘p’, ‘b’ and ‘m’ which are visually

identical cause LRT to become incapable of distinguishing some words. At the same

time SR models easily confuse letters such as ‘m’ and ‘n’ which are visually distinct

(2). There are ways of overcoming these difficulties such as combining lip-reading

with speech recognition or use some form of context based prediction technique

such as the trigram analysis6 (9).

3.2 Past Studies of Lip-Recognition Technology (LRT)

Most work done in the past does not employ DNN methods in the attempt to

solve lip-reading (2) (9). In 1997 Goldschen was one of the first scientists who

attempted to perform lip-recognition without using a combination of both audio and

4 Word/sentence instance is a file sliced out of a whole video at specific times to contain only
a single word or a sentence.
5 Word which produce different sounds but involve identical lip movements.
6 Trigram analysis is a method of establishing context through the use of three-word clusters
[66]. With the use of probabilities, the third word in sequence is predicted based on the first
two words [66].

5

visual features. Recognition was accomplished with the use of hidden Markov

models (HMMs) on hand-segmented phones instead of lip-movements (9).

Integration of automatic lip-reading with acoustic speech to improve overall

SR has also been attempted in the past. In 1994 Paul Duchnowski performed

integration of visual information with acoustic speech using a multi-state time delay

neural network (10). The work done was only capable of recognising spelled

characters using the German alphabet (10). In other words, to recognise a word

such as ‘hello’, each letter had to be spoken separately in sequence such as ‘h’ ‘e’ ‘l’

‘l’ ‘o’ (10).

In 2000 Neti et al. used IBMs ViaVoice database to perform sentence speech

recognition using HMM on extracted audio-visual (AV) features (9).

In 2016 Researchers at the University of Oxford created LipNet (9), a lip-

reading software which implements deep learning end-to-end (E2E)7 trainable

models (11). The software, instead of classifying (identifying) discrete words,

attempts to recognise whole sentences (continues speech). Due to continuous

speech, coarticulation8 occurs causing distortion at the words’ boundaries. This

particular approach was inspired from the fact that human lip readers are more

successful in identifying longer words rather than shorter words (9). LipNet was

trained and tested on the GRID corpus dataset (9). With use of the iBug landmark

predictor 68 facial landmarks were predicted and the region of the lips was cropped

(9). The cropped region was used for the training and prediction of words (9). The

program achieved 95.2% accuracy in contrast to 52.3% for experienced human lip

readers and the previous 86.4% state-of-the-art accuracy (12). It is important to

mention that high accuracy results such as these were due to the fact that the GRID

corpus dataset consists of a very limited range of words making the lip-reading task

much easier (13). The algorithm is incapable of recognising a sufficient range of

words to be used commercially. However, it was at the time a solid proof concept

that DNN could be used to tackle lip-reading which led to further research. The

source code of LipNets is freely available on GitHub.

Another research paper on LRT was published by the University of Oxford in

2016 (2). Similar to LipNet, various studies use CNN architectures o recognise whole

7 E2E training refers to the method of training an algorithm directly from the sampled data.
8 Coarticulation is the phenomenon which causes two words to become partly merged due to
the process of continuous speech. For example the end position of the lips when a word is
spoken becomes the starting position of the next word and vice versa.

6

words from continuous speech (2). In order to account for noise due to the relative

motion between the head and the camera, rather than implementing visual

registration9 the model was trained to recognise some degree of tolerance (2). A

program known as pipeline was developed which automatically collected and

produced hundreds of different single word instances from BBC with over a million

instances in total (2). Data augmentation10 was implemented in order to expand the

dataset and improve performance by reducing overfitting (2). The pipeline was used

to create the LRW dataset (2). Despite the large size of the dataset, the models were

trained and tested only on 500 and 333 different words for the most commonly

word instances in the dataset (2). Each word in the training and testing datasets is

contained more than 800 times (2). Out of four architectures tested, Multiple

Towers (MT) achieved the highest accuracy rates of 65.4% for a set of 333 words

and 61.1% for a 500 set.

The research of LRT at the University of Oxford continued in the subsequent year of

2017 (14). The study published two contributions, a new dataset Lip Reading

Sentence (LRS2) and an algorithm WLAS which transcribes videos of mouth

movements into characters (14). LRS2 was created from BBC video samples and

contains 100,000 of sentences (14). The WLAS model makes use of DNN and is

capable of operating over pure audio, pure video or both inputs to perform dictation

(14). WLAS is a sequence-to-sequence model, reads whole sentences as inputs and

attempts to predict whole sentences (14). The study exceeded in performance all

previous studies when the WLAS model was tested on LRS2, LRW and GRID datasets

(14). The study also showed that lip-reading could be used to improve SR (14).

3.3 Lip-Reading Databases

3.3.1 GRID Corpus & Lombard Grid

The GRID Corpus consists of 34 speakers, 16 female and 18 male speakers (15).

The dataset contains 1000 sentences per speaker and a total of 27.5 hours (9).

Samples are 3 seconds long and contain 25 fps. The dataset contains audio at 44.1

kHz. FFmpeg was used to convert the video files to MPEG-1 format (15). Each

sentence is structured with a fixed pre-determined sequence of classified words:

9 Visual or image registration is the process of transforming the coordinate systems of
different frames within a sample into a single common coordinate system (113)
10 Data augmentation is a common technique used for enlarging ML datasets. The technique
enlarges the dataset by creating duplicates of the samples with small modifications such as
adding noise to the samples.

7

command, colour, preposition, letter, digit, adverb (13). The dataset contains a

vocabulary of only 51 words and it is deemed unsuitable for large scale lip-

recognition (16) (15). LipNet was trained and tested on this dataset by using samples

containing the region of the lips cropped at 100 × 50 pixels per frame (9).

The Lombard Grid is considered an extension of the GRID dataset as the

samples follow the same sentence format. The dataset consists of 54 speakers, 30

female and 24 male (17). The dataset contains 100 utterances per speaker, 50 front

facing and 50 side facing and in total 16,200 samples of audio, front view and side

view video samples (17). The audio files of the dataset are of ‘wav’ format and the

video files of ‘mov’ format (17).

Both datasets have been produced by the University of Sheffield and are freely

available for personal and commercial use under the CC BY 4.0 licence.

3.3.2 Common Voice

Common Voice is Mozilla’s open source multi-language database of voices that

anyone can use to train SR algorithms (18). The database was created through an

online application where volunteers contribute samples of their voice. The idea of

introducing a platform open to the public for everyone to contribute is brilliant and

apparently very successful. The database has reached a size of 38 GB with 3401

recorded hours in total across 40 different languages (19). The database is

specifically for the training of speech recognition algorithms only, as it consists

purely of audio content. It is one of the largest and most diverse datasets available

to the general public licensed under the creative commons-0 (CC-0, no copyright)

which allows any use of the dataset (18).

3.3.3 MIRACL-VC1

MIRACL-VC1 is a lip-reading dataset which consists of five men and ten women

repeating a pre-defined list of ten words and ten phrases (20). The dataset contains

video samples of size 640 × 480 pixels and a total number of 3000 instances. It is

available for research purposes only (20).

3.3.4 VivaVoice

VivaVoice is a proprietary lip-reading dataset developed by IBM. The dataset

consists of 290 subjects performing continuous speech (21). The database consists

of 10,500 words and a total of 24,325 utterances. The dataset contains video samples

of size 704 × 480 pixels and frame rate of 30fps. Unfortunately, the dataset is not

available to the public.

8

3.3.5 Lip Reading in the Wild (LRW)

The LRW dataset was introduced by the University of Oxford in 2016 to

overcome the shortage of large vocabulary datasets (2). The dataset consists of

proprietary data from the BBC (2). The dataset contains 1000s of hours of spoken

text with 1000 different words with over 1million word instances for more than 1000

different speakers (2). The overall length of the dataset is 173 hours (22). Each

sample in the dataset contains a single word instances sampled at 25fps (2). The

dataset is available for pure research purposes under the CC-BY-NC-ND 4.0 licence

(2).

3.3.6 Lip Reading Sentence 2 (LRS2)

LRS2 was published the year after LRW (2017) by the University of Oxford.

LRS2 was produced from BBC programs that have been on live television between

2010-2016 (14). The dataset, in contrast to LRW, contains whole sentences rather

than single word instances (14). The dataset, contains mostly news programs, as they

contain stable and continuous talking heads (14). The dataset consists of more than

100,000 natural sentences, a vocabulary of 120,693 words and a total of 224 hours of

length (14) (22). The video instances are samples at 25 fps (14). WLAS was trained

using LRS2 with cropped input images at the region of the mouth of size 120 × 120

pixels (14). The dataset is available for pure research purposes under the CC-BY-

NC-ND 4.0 licence (14).

3.3.7 Lip Reading Sentence 3 (LRS3)

LRS3 was introduced in 2018 by the University of Oxford (22). The dataset

consists of TED and TEDx (YouTube) video samples of dimensions 224×224 pixels

only and a frame rate of 25fps (22). The audio samples are at 16 kHz (22). The content

was collected from TED and the TEDx YouTube channel (22). The samples contain

whole sentences from 14,352 speakers and 128,136 vocabulary words (22). The

dataset consists of a total length of 438 hours (22). Unlike LRW and LRS2, the LRS3

is very unlikely to contain the same person speaking in both training and test sets

because each TED talk involves a different speaker as opposed to news programs

(22). The dataset is available for pure research purposes under the CC-BY-NC-ND

4.0 licence (22).

3.4 Pipelines

Pipelines, are programs which have been developed to extract and manipulate

data from datasets, in the necessary format, needed for training ML models. The

program developed in this project is essentially a pipeline program.

9

3.4.1 LRW (BBC) Pipeline

The pipeline performs the following operations to converted content from BBC

into the LRW dataset:

1. Aligned the text to the audio with the use of the Penn Phonetics Lab Forced

Aligner (P2FA) (2).

2. Apply the HOG-based face detection method to identify the frames which

contain a face, hence the frame to apply tracking (2).

3. Determine the speaking head by:

a. Apply facial landmarks on all faces detected,

b. Extract the temporal signal11 from the relative motion between the

upper and lower lip landmarks (2).

c. Implement a linear SVM classifier to make the distinction (2).

4. Extracted the subtitles by performing Optical Character Recognition on

printed subtitled in the video (2).

5. Crop the region of the lips (2).

6. Apply data augmentation such as random cropping, flipping etc. (2).

7. Create test and validation datasets of 500 and 333 vocabulary sizes containing

the most common spoken words in the dataset (2).

3.4.2 LRS2 (BBC) Pipeline

The pipeline used for LRS2 contains many similar processes as the pipeline of

LRW (23). The processes performed are:

1. Alignment of text to audio, identical to step 1 of LRW (BBC) pipeline (14).

2. Apply face detection, identical to step 2 of LRW (BBC) pipeline (14).

3. With the use of regression trees facial landmarks were extracted (14).

4. Audio and video streams were aligned based on the CNN SyncNet developed

by Joon Son Chung and Andrew Zisserman (24) (14). The same network was

used to determine playback music and reject voice over samples (14).

5. Separate the text in sentences using punctuations in the transcript (14).

6. Crop the region of the lips (14).

11 Temporal signal is the time signal produced from a tracked point across multiple video
frames.

10

3.4.3 LRS3 (TED) Pipeline

The pipeline used to create LRS3 contains many similarities as the pipelines of

LRW and LRS2. The pipeline performs the following processes:

1. Applies a CNN face detector based on the Single Shot Multibox Detector

(SSD) for every frame (25) (23). The SSD face detector is considered faster

and it is also capable of detecting faces from all angles as opposed to the

HOG-based detector used in LRW and LRS2 (23) (2).

2. Alignment of text to audio, identical to step 1 of LRW (BBC) pipeline (14).

3. Alignment was evaluated by running Kaldi-based ASR model on the samples

(23).

4. Alignment of audio to video, identical to step 4 on LRS2 (BBC) pipeline (23).

5. Crop the region of the lips (23).

3.5 Literature Review Summary

Recent research suggests DNN is the most effective approach to tackle lip-

reading. Longer samples make lip-recognition easier for both humans and machines,

hence the processing of sentence samples is preferred over individual words. The

LRW, LRS2 and LRS3 datasets are the most comprehensive and vocabulary sufficient

datasets which could be used to train DNN. These datasets contain samples at 25

fps and a vocabulary of more than 100,000 words. The models which deploy DNN

are trained and tested through word or sentence samples of cropped regions of

about 100 × 100 pixels at the region of the mouth. All pipelines share very similar

functionalities such as alignment between text, audio and video, face detection,

speaker detection, landmark extraction and cropping at the region of the lips etc.

4 COPYRIGHT EXCEPTIONS

Since the English language was established as the international language of the

world, most tools and trained models available, are in American English. The Tool

will primarily make use of samples from fluent English speakers. As a result, we are

mostly concerned about the copyright laws of the US and UK where most videos

used will originate.

In general, in order to make use of a copyrighted material such as a YouTube

video it is required to obtain permission from the copyright owner. Fortunately,

there is an exception to copyright law known as ‘fair use’ in the United States (US)

and ‘fair dealing’ in the UK. Fair use allows the reuse of copyright protected material

11

(including YouTube videos) under certain circumstances without the permission of

the copyright owner (26).

In the US only the court is allowed to determine what can be considered as

fair use and the regulations vary between countries (26). This is fairly problematic

as there is no clear distinction of what can be considered as fair use and what

cannot; hence, some risk is introduced regardless of the precaution measurements

taken. The judge’s decision of whether or not a copy write complies for fairs use is

based on the following attributes:

1. The purpose and character of the use (27). If the work was modified such as

a new expression or meaning is added then the content can be considered

transformative and therefor will fall under the terms of fair use (27) (26). This

usually applies for videos which comment or refer to other videos and it is

not applicable in our case.

2. The nature of the copyrighted work (27). The use of factual works such as a

documentary which may be used for educational purposes is more likely to

be accounted as fair use rather than fictional works that can be used for

entertainment purposes (27). Usually the reporting of current events that

may benefit the general public fall under this category (27).

3. The amount and substantiality of the portion taken (27). The less the copy

righted material used the more likely it will be considered as fair use.

4. The effect of the use upon the potential market (27). Whether the use of the

copyrighted material may impact the income of the copyright owner to an

existing or potential market (27).

According to the US law, a dataset consisting of copyrighted content may be

considered as fair use for the following reasons: (a) the copyrighted content which

will be contained in the dataset will be modified (cropped etc.) to produce new

meaning, and (b) the dataset will not be commercialised (sold for money) and will

be used for research purposes (the training of machine learning algorithms).

Similarly, the UK includes an exemption to its copyright law known as fair use.

As opposed to the US, in the UK defines clear boundaries of which actions are

considered as fair use. As stated on the government website ‘allows researchers to

make copies of any copyright material for the purpose of computational analysis if

they already have the right to read the work’ (28). Hence, copies of copyrighted

material are permitted for the purpose of pure research for text and data mining

purposes if the individual is allowed to read the content. There for any video

available to read on the internet (including from YouTube) can be downloaded and

processed to test the functionality of the Tool. In addition, a lip-reading dataset

12

could be created using this content where ML models are trained assuming neither

the dataset nor the model is sold or used commercially. However, the code (Tool)

written to modify the YouTube videos and thus create the dataset may be licensed

under any license.

4.1 Downloading Content from YouTube

YouTube is unquestionably the largest and most popular AV dataset available

on the web. Most YouTube videos are copyright protected and YouTube cannot

grant the rights to download and make use of the copyrighted content posted on

YouTube (29). Unfortunately, YouTube cannot help identify the video owner. This is

can be problematic as requesting explicit permission for each video would slow

down greatly the process of building a sufficiently large dataset to train a lip

recognition algorithm.

4.2 Fair Use Conclusions

Both the US and UK laws share many similarities. The UK states clearly that

copyrighted material may be used for pure research purposes only. The US suggests

the same but with the distinction that this can only be determined by the court.

YouTube does not provide help in identifying the owners of a video apart from the

video content available on their YouTube channel. Hence, identifying the origin of

the owner requires research. Since international copyright law does not exists, it is

unknown of whether or not the country of origin, the video was created in,

determines which law is applicable or from the country the video was downloaded

and used. For example if a video was produced in the US and it is downloaded and

processed in the UK, which of the two laws applies?

5 ETHICS

If the design approach involves the creation of a dataset from local or online

recordings, volunteers will be asked to submit samples of themselves speaking in

front of a camera. Participants are required to read and consent to the terms

mentioned in the ethical approval form (Appendix 12.7). The contributors apart from

submitting samples of themselves talking will also be asked to provide useful

information such as gender, age, ethnic origin and mother tongue. The protection of

the privacy of the participants and the prevention of storing sufficient information

to Uniquely Identify (UI) a person are taken into serious consideration. The

approach of storing personal information and protecting it with the use of

13

encryption was discarded as it is prone to human errors. The following steps ensure

the protection of the participant’s privacy by avoiding the collection of sufficient

information to track or to UI them:

 Make use of randomly generated identities (IDs) in the dataset instead

of names.

 Crop and keep only the region of the mouth stored in the dataset. Full

face images could be used to UI someone using image search engines

(30) or even unlock smart devices with enabled facial biometric

identification (31).

 Extract landmark positions only at the region of the lips. Facial landmark

points across the whole face could be used to identify someone.

If the design approach makes use from content which is already available to

read from the internet, then there is no need to limit (partly remove) the content

stored locally. However, since the content will already be freely available to read, the

videos’ URLs will be stored. If this design approach is followed, the content could be

used without the owner’s consent as the purpose of the work conducted will fall

under the UK fair usage exception.

6 PROJECT SELECTION

Three potential approaches have been considered in the creation of the

dataset. The first approach makes use of content freely available from the internet,

the second of local recordings and the third from online recording through a web

application.

 The software architecture of how a commercialised version of the Tool which

incorporates all three design approaches operates is show on Figure 43 in the

Appendix 12.2.

6.1 Design Approach

The selection of the design approach was

guided by Paul Nanouk’s ideology. In his own words

this is ‘doing the most good for the most people

with the least amount of effort’ (33).

During the development of the Tool the

principles of agile software development (Figure 1)

will be applied along with the UNIX OS coding

Figure 1 Minimum viable product,

agile development by Henrik (32).

14

principles. The approach of developing the Minimum Viable Product (MVP) first

(Figure 1) was applied on the development of this project. Rather than attempting to

produce a perfect application, the most essential processes, such as video

extraction, slicing, face recognition and lip-cropping were developed first.

6.2 Design Matrix

In order to decide the best design approach, a simple decision matrix was

filled in with values ranging from 1 – 5. Number 5 was used for excellent and 1 for

poor performance. The following properties were considered:

Quality: The quality parameter refers to the quality of the end result dataset. The

value is based on the ability of the method to produce a dataset with identical or

better specifications in comparison to other lip-reading datasets such as LRW.

Difficulty: The difficulty is based on the complexity and expertise needed to create

the Tool. It is characterised as the ‘amount of effort’ from Paul Nanouk’s quote.

Time: Time which will be required to build the dataset. The less the time needed to

create the dataset the more realistic the end goal of the project.

Table 1 Decision matrix table.

 Approaches Quality Time Difficulty Total

1 Internet 3* 4 3 36

2 Local 2* 1 4 8

3 Online 2* 3* 1 6

 Approaches on Table 1 have been ranked with comparison to one another and

from the available possessions such as the build in camera of the laptop Dell Inspiron

7559. The asterisk ‘*’ indicates there is an uncertainty or variation due to the lack of

information.

6.2.1 Results Breakdown

The values assigned to quality (Table 1) originate from the ability of each

approach to produce a dataset containing high resolution and high frame rate (25>)

samples. The built-in camera of the available computer (Dell Inspiron 7559) specifies

30 fps (maximum) and a resolution of 720p (34). When tested in practice using the

cv2 library in python 3, the maximum fps achieved was only 15 fps. When face

recognition was applied performance dropped even further to near 10 fps. The

frame rate of the samples in the dataset is very important for LRT (35). The average

15

time taken to speak a common word such as ‘hello’ is about 300ms12. For 10 fps this

results to only 3 data points which is insufficient. According to the literature, even

25 fps contained in other datasets such as LRW is too low when speaking at high

speed rate (35). Due to these reasons both local and online approaches have been

ranked with the same value as the specifications between personal computers are

similar. The asterisk assigned accounts for the variation in specifications and the

potential of using an external high fps camera. The internet approach was ranked

higher as videos on YouTube range from 144p to 4k resolutions and framerates of

25, 30 and up to 60fps. With the use of the command line tool youtube-dl all available

formats for a specific URLs can be obtained.

 The Time (Table 1) corresponds to the amount of time needed to build the

dataset. The local approach requires recording of the samples from scratch. This is

a tedious and time consuming process and hence it is ranked the lowest out of the

three. The online approach relies from online volunteers to contribute recorded

samples which will then be processed in a suitable format. The rate at which raw

samples are submitted depends on the popularity of the platform; nevertheless the

samples must also be verified. The internet approach was ranked higher than the

rest as it makes use of pre-recorded samples available on the internet and does not

involve the additional step of producing the samples.

 In the difficulty parameter (Table 1) the local approach was ranked the highest

as it is the simplest to implement and the online approach the lowest as it Is the most

complex to implement (requires setting an online application to a server etc.).

According to the design evaluation matrix, the internet approach surpassed

significantly the other approaches and will thus the approach to be developed.

7 THE TOOL

7.1 Coding Principles

When large programs are written, specific and well defined guidelines must

be followed to preserve clarity and manage complexity. This is essential to ease fault

identification and debugging. The UNIX programing style/strategy was adopted

during the development of the Tool program. UNIX based Operating Systems (OS)

12 By measuring the time taken for one to say the word ‘hello’ 10 times and dividing by 10 we
find that it takes an average of 300ms to speak out loud the word.

16

such as Linux, apart from been free are unquestionably one of the most versatile,

efficient and long-lasting OS. They are primarily used in critical restless systems

such as servers and supercomputers [57].

According to the book ‘The Art of Unix Programming’, in order to write a long

lasting program the following coding practices should be followed:

 ‘Write programs to do one thing and do it well’ (36) (37) (38).

 ‘Write programs to work together’ (36).

 ‘Expect the output of every program to become the input to another’ (37).

 ‘Build it out of simple parts connected by well-defined interfaces,

upgrading a part without breaking the whole.’ (39).

 ‘Keep it simple to make it faster’ (38).

The following statements emphasize the concepts of modularity, reusability

and simplicity which should be considered in the design.

7.2 Introduction

The Tool is essentially a pipeline program which instead of using a proprietary

dataset such as BBC’s news programs, it extracts content from YouTube. Content

is downloaded with the use of youtube-dl an open source command-line program

developed specifically for the purpose of downloading content from YouTube.

Despite the fact that youtube-dl is optimised for YouTube it is capable of extracting

AV content for more than a thousand websites (40). This design feature allows it to

automate many operations similar to other pipelines to create datasets similar to

LRW, LRS2 and LRS3. The program handles many different file formats as it makes

use of FFmpeg which supports a very wide range of available formats including mp4,

mp3, wav, avi, mkv, y4m and more. FFmpeg was used in the creation of LRS3 and is

a very powerful open-source command-line program. It is capable of decoding,

encoding, transcoding, filtering and playing most if not all media formats. The Tool

does not support interactive mode; all desired changes to the default parameters

must be specified prior the execution of the program.

7.2.1 Brief Design Overview

The program was broken down into multiple files each containing multiple

functions. The main body of the program calls functions defined in these files in the

correct sequence to produce the desired result. The output of each function

becomes the input of the next function. Once the desired settings are specified, the

program continues execution without the need of any further user interpretation.

The initial functions (Function 4) are responsible of downloading content from

17

YouTube. This function could be replaced with other functions suitable for

downloading content from other sources such as Box of Broadcasts (BOB) without

requiring changes to the remaining functions. Similarly, the functions responsible

for manipulating AV content could be applied on local data.

7.3 Dependencies

The software was developed in python 3 and it was designed and tested to

work on Kubuntu 19.0413. The software has the following dependencies:

 Python 3.7.7 with the anaconda environment. In particular the following

modules are used: pandas, numpy, cv2, dlib, time, string, itertools,

subprocess, pickle, csv, json, os, argparse, pydub, audiosegment,

random and date.

 Ubuntu based distribution of 19.04 version or greater.

 The bash14 command line program (default terminal).

 FFmpeg; an open source multimedia handling command line tool.

 Youtube-dl; an open source media extraction command line tool.

The overall program consists of ten files, nine of which are necessary for the

execution of the program and one for demonstration and testing purposes.

Table 2 Software file content breakdown.

File Name Brief Description

main.py Main body of the program which is

executed by the user.

module_convert_audio_to_wav.py Contain the functions called by the

main.py. In order to reduce

complexity and make debugging

easier, functions responsible for

complicated tasks make use of other

smaller and simpler functions. Each

function and its sub-functions are

stored in the same file, hence all

functions are self-contained.

module_face_detection.py

module_process_subtitles.py

module_sample_name.py

module_save_variables.py

module_video_processing.py

module_youtube_extract.py

13 Name of OS based on Ubuntu Linux distribution.
14 Bash also known as terminal is a similar program to the windows command-prompt.

18

DEMO_face_detect.py Demo file showing the user the effect

of various different face recognition

options available.

shape_predictor_68_face_landmarks.dat Necessary file for loading the facial

land marks.

7.4 Main body Functions Breakdown

The program is executed from main.py. A link to the GitHub repository, where

the whole source code of program is published, can be found in the Appendix 12.4.

The functions are listed in their execution order and any identical function

arguments (parameters) across multiple functions share the same purposes. For

example the argument SAVE is used to specify if the output result of the function

should be stored locally for all functions.

7.4.1 Essential Configurations

In order for the program to execute apart from satisfying all dependencies and

loading all necessary module files, which contain the functions, the user needs the

following: 1) stable internet connection, 2) URL to specific YouTube video which

should be downloaded, 3) specify the name of the video file which will be

downloaded.

7.4.2 File Generation

Function 1 Random string generator.

random_string_INPUT = str(module_sample_name.passw_gen(MODE=0, LENGTH=3))

 Function 1 generates a random string variable (random_string_INPUT) which

will become the input of Function 2. The MODE argument accepts integer values 0-

6 and specifies the range of possible characters contained in the string. The available

options are alphabetical characters a-Z, numbers 0-9, special characters and all

possible combinations of them. The default value of 0 corresponds to pure

alphabetical characters. The LENGTH argument accepts positive integer values and

specifies the number of characters the string consists of. Figure 2 shows an example

result produced by Function 1.

Figure 2 Function 1 output, variable random_string_INPUT.

19

Function 2 Folder generator.

FOLDER_PATH = module_sample_name.folder_gen(RANDOM_STRING = random_string_

INPUT, FILE_PERMISION = '777')

Function 2 generates the folder in which all the downloaded content (subtitles,

video and audio) will be stored and creates a string which contains the absolute

(whole) path to that folder (Figure 3). The argument RANDOM_STRING specifies the

name of the generated folder which is the output from Function 1. FILE_PERMISION

specifies the permissions granted to that folder, the default value ‘777’ corresponds

to the permissions read, write and execute for all users. The function makes use of

the command line tool mkdir to generate the folder. All folder permission options

can be found in the documentation page (41).

Figure 3 Function 2 output, variable FOLDER_PATH.

7.4.3 List All Available Download formats

Variable 1 Name downloaded content.

NNAME = '/Name of the downloaded video goes here without special characters'

NNAME = NNAME.replace(' ', '_')

 Variable NNAME in variable 1 contains the name assigned to the files

downloaded. The slash ‘/’ at the beginning must be included in order to store the

files in the generated folder produced by Function 2. The second line substitutes all

spaces as they are special characters and could become the source of future syntax

errors.

Variable 2 Video URL.

 Variable INPUT_URL in Variable 2 contains the URL of the YouTube video. The

URLs should be carefully selected to ensure there is no background noise in the

video and that it contains primarily a single person talking in front of the camera.

The most suitable YouTube videos are of news programs, podcasts, interviews and

videos of educational purposes. Figure 4 shows various YouTube filtering options

which could be used to identify suitable videos.

Multiple URLs correspond to exactly the same YouTube video. Each time a

video is added to a playlist a different URL is assigned pointing to that video. Any URL

INPUT_URL = 'youtube URL goes in here'

20

specified will work, however if a playlist URL is assigned youtube-dl will download

the specified video and along with all other videos in the playlist. The Tool is only

capable of processing one video at a time, hence any additional videos which have

been downloaded will not be processed.

Figure 4 Youtube filtering options.

Function 3 Lists all available download formats.

INPUT_FILE_NAME=str(FOLDER_PATH) + NNAME

available_formats = module_youtube_extract.list_available_AV_formats(URL =

INPUT_URL, CLEAN=True, LIST=True, SAVE=True, FILE_NAME = INPUT_FILE_NAME +

'_down_formats')

 Function 3 makes use of the command line tool youtube-dl to requests all

available video and audio formats. CLEAN and LIST arguments specify different

output formats which are stored in the variable available_formats (Figure 5). Each

available format corresponds to its own unique identification code (Figure 5). The

codes assigned to each format are fixed. If a video does not support the

specifications of a particular format, the code of the format is excluded from the list

(Figure 5). The SAVE argument specifies if we wish to save the result locally and the

FILE_NAME argument specifies the desired file name.

Figure 5 available_formats variable.

21

7.4.4 Downloading YouTube Content

Function 4 Download youtube video.

module_youtube_extract.down_audio_video(URL = INPUT_URL, VIDEO_QUALITY_COD

E=22, AUDIO_QUALITY_CODE=140 , MERGE=False, FILE_NAME = INPUT_FILE_NAME)

Function 4 downloads any video from YouTube or from the list of websites

supported by youtube-dl (40). The URL argument specifies the video to download,

the VIDEO_QUALITY_CODE and AUDIO_QUALITY_CODE correspond to the desired

audio and video code formats specified from the output of Function 3. The MERGE

argument specifies whether or not we wish to merge the audio and video files or

keep them as two separate files and the FILE_NAME specifies the name of the files.

The audio and video files share the same names but different extensions. Youtube-

dl mainly supports mp4 for video formats and m4a for audio.

7.4.5 Convert Audio File

Function 5 Convert audio to wav format.

module_convert_audio_to_wav.file_conversion_to_wav(FORMAT_FROM='.m4a', FIL

E_NAME=INPUT_FILE_NAME, BIT_RATE='192k')

whole_pure_audio_file_name_dir = INPUT_FILE_NAME + '.wav'

Function 5 makes use of FFmpeg to convert from any desired specified

extension of the argument FORMAT_FROM to a wav file. The BIT_RATE argument

specifies the bit rate (sampling rate or data points per second) of the new file. The

variable whole_pure_audio_file_name_dir contains the absolute path of the wav file.

Conversion from m4a to a wav format is necessary in order to align the speech

to text using the P2FA (42). The P2FA requires a wav audio file of 8kHz, 11,025kHz or

16kHz to execute (42).

7.4.6 Convert Video File

Function 6 Convert any-to-any video file.

video_converted_to_mkv = module_video_processing.convert_from_mp4_to_mkv(FI

LE_NAME=INPUT_FILE_NAME, INPUT_EXTENSION='.mp4', OUTPUT_EXTENSION = '.mkv')

Function 6 was developed in order to copy (does not encode or decode) the

downloaded video of mp4 format from Function 4 into an mkv format. The

conversion to mkv format results into less slicing errors than the mp4 format. The

arguments are the FILE_NAME defined previously, the extension of the file

INPUT_EXTENSION and the extension of the resulting file OUTPUT_EXTENSION.

22

The absolute path of the newly created file name is assigned to a variable. The

function makes use of FFmpeg.

7.4.7 Download Subtitle Formats

Function 7 Extract available subtitle formats.

string_subtitle_formats, manual_subtitles_exist, automatic_subtitles_exist

 = module_youtube_extract.list_available_subtitles(URL = INPUT_URL, FILE_N

AME = INPUT_FILE_NAME, TXT_CLEAN=False, TXT=False, JSON=False)

 Function 7 with the underline use of youtube-dl makes a request from the web

server for all available subtitles of a specific URL. The arguments TXT and JSON

specify in which file format to save the subtitles, as a text file or a json file.

TXT_CLEAN specifies a clean save format if the TXT argument is specified as well.

The outputs of the function are the string variable string_subtitle_formats

containing all available formats as shown on Figure 6. The output

manual_subtitles_exist is assigned the Boolean values True or False based on

whether or not the owner has added their own subtitles manually to the YouTube

video. The output automatic_subtitles_exist specifies if the owner has enabled

automatically generated subtitles to the video. Similarly, a Boolean value is assigned.

Figure 6 string_subtitle_formats

7.4.8 Download Subtitles

Function 8 Download subtitles.

man_sub_var, auto_sub_var = module_youtube_extract.down_sub(URL = INPUT_URL,

 FILE_NAME=INPUT_FILE_NAME+'SUBTITLES', TYPE='vtt', LANGUAGE='en', MAN_SUB =

 manual_subtitles_exist, AUTO_SUB = automatic_subtitles_exist, SAVE=True)

Function 8 downloads the manually added subtitles of the owner and the

automatically generated subtitles if they have been enabled and stores the results in

23

variables man_sub_var and auto_sub_var. The function makes underline use of

youtube-dl and accepts the outputs from Function 7 for arguments MAN_SUB and

AUTO_SUB. The TYPE and LANGUAGE arguments specify the file type in which

subtitles will download into and the desired language within the list in the variable

string_subtitle_formats.

7.4.8.1 Subtitle Combinations

Four potential cases have been encountered which require different handling

procedures.

The first case is encountered when the video does not contain neither

automatically generated subtitles nor manually added subtitles. This could be

caused due to the fact that the video does not contain anyone speaking or the owner

did not add their own subtitles or the option of automatically generating subtitles

was disabled by the owner. In this particular case, since subtitles are absent,

subtitles could either be manually added by listening to the video and typing them

into a text file or automatically generating them using a speech-to-text machine

learning model such as DeepSpeech. It should be noted that speech-to-text models

are not perfect and errors (incorrect dictations) could occur.

The second case scenario would be when either the user has posted their own

subtitles but has disabled automatically generated subtitles. The time range, of when

each sentence in the subtitles is presented in the video, is also contained in the

subtitle file. However, time frame of each spoken word is unknown hence text to

audio alignment is needed.

The third case is when only automatically generated subtitles are available. One

of the excellent properties of YouTubes automatically generated subtitles is the

alignment of the subtitles per word. As a result, in this case where subtitles are

aligned per word, an aligner such as P2FA is not needed.

The last case is when both automatically generated subtitles and manually

added subtitles are available.

7.4.8.2 Subtitle Formats

From all four cases, it is made clear that the videos which fall under the case in

which subtitles are automatically generated and aligned produces the easiest and

most convenient case as it avoids the need of an aligner. Since the MVP (Design

Approach 6.1) could be built without the use of an aligner, the implementation of

24

P2FA was skipped at this stage and might be implemented after the realisation of the

MVP.

By testing a wide range of videos (Appendix 12.5) the following cases have been

encountered for both manually added subtitles and automatically generated

subtitles:

1. Sentence subtitles with alignment per sentence as shown in Figure 7.

2. Sentence subtitles with both alignment per word and per sentence as shown

in Figure 8.

Figure 7 Raw subtitle example with alignment both per word and per sentence.

Subtitle variables have been created to account for each case scenario which

resulted into six different variables in total. These variables are separated further

into lists per text (Figure 10) and their time values (Figure 11), hence a total of 12

subtitle variables are needed. These subtitles are listed in Table 3 with the following

notation ‘auto/man’_’content/time’_’per_word/sentence’_’easy/hard’.

 auto: automatically generated, man: manually added by the owner.

 content: contains the subtitles, time: times presented in the video.

 word: subtitles per word, sentence: subtitles per sentence.

 easy: contains timings per word, hard: contains timings per sentence.

Table 3 Classified subtitle variable names.

Figure 8 Raw subtitle example with alignment of both per word and per sentence.

acpwe: auto_content_per_word_easy, atpwe: auto_time_per_word_easy,

25

7.4.9 Process Subtitles

Function 9 Categorize subtitles.

acpwe, atpwe, acpse, atpse, acpsh, atpsh, mcpwe, mtpwe, mcpse, mtpse, mcpsh

, mtpsh = module_process_subtitles.format_sub(MAN_SUB_EXIST = manual_subtit

les_exist, AUTO_SUB_EXIST = automatic_subtitles_exist, MAN_SUB_EASY_TYPE =

man_sub_easy_type, AUTO_SUB_EASY_TYPE = auto_sub_easy_type, MAN_SUB = man_s

ub_var, AUTO_SUB = auto_sub_var)

 All arguments of Function 9 make use of the output result variables produced

by Functions 7 and 8. Function 9 creates lists of the classified subtitle variable names

contained in Table 3. For every video Function 9 produces a maximum of 4 non-

empty variables out of the 12 in total. The remaining variables are assigned the

Nonetype object as shown on Figure 9.

Both acpwe and atpwe variables are of the same length (Figure 9), acpwe

contains individual words (Figure 10) and atpwe contains the time (start time) each

word is presented in the video (Figure 11).

mcpwe: man_content_per_word_easy, mtpwe: man_time_per_word_easy,

acpse: auto_content_per_sentence_easy, atpse: auto_time_per_sentence_easy,

acpsh: auto_content_per_sentence_hard, atpsh: auto_time_per_sentence_hard,

mcpse: man_content_per_sentence_easy, mtpse: man_time_per_sentence_easy,

mcpsh: man_content_per_sentence_hard, mtpsh: man_time_per_sentence_hard,

acpse: auto_content_per_sentence_easy, mtpse: man_time_per_sentence_easy,

mcpsh: man_content_per_sentence_hard, mtpsh: man_time_per_sentence_hard

Figure 9 All subtitle variables.

26

Figure 10 Example acpwe variable.

Figure 11 Example atpwe variable.

 Since the atpwe variable contains only the start time values, the ending of the

spoken word is unknown. To overcome this problem the stop time is assumed to be

the start value of the subsequent word in the list. There is clearly a limitation of using

the particular technique as it fails to accurately capture single word samples if

pauses are contained during someone’s speech. The Tool will keep capturing until

the next presented word appears in the video which will result into a defective sliced

video segment. This is one of the limitations of the Tool as it does not deploy audio

to text alignments (P2FA) or SyncNet to which will allow it to distinguish between a

person’s speech and background music as YouTube ASR only provides the starting

value for each word. With the current development of the Tool this problem is

overcome using three different approaches:

1. Selecting videos which contain an uninterrupted talking face.

2. Avoiding performing slicing between time boundaries containing

interruptions or long pauses of the speaker.

3. Completely discard word aligned subtitles for the particular video.

 For variables which contain whole sentences such as acpse (Figure 12), their

matching time variables such as atpse (Figure 13) contain both the start and stop

time values (boundaries) per sentence as shown in Figure 13.

Figure 12 Example of acpse.

Figure 13 Example of atpse.

27

7.4.10 Max Video Length

Function 10 Get the maximum time length of the video.

max_time = module_video_processing.maximum_time_of_vid(ATPSE=atpse, MTPSE=

mtpse, AUTO=automatic_subtitles_exist, MAN= manual_subtitles_exist)

if max_time == None:

 max_time = module_video_processing.maximum_time_of_vid(ATPSE=atpsh, MT

PSE=mtpsh, AUTO=automatic_subtitles_exist, MAN= manual_subtitles_exist)

else:

 pass

Function 10 makes use of the outputs from Function 9 and 7 to compute the

maximum time of the video. The function requires at least one of the variables atpse,

mtpse, atpsh and mtpse to be a list and not a Nonetype object as shown on Figure 9.

The output of the function is the maximum length of the video in seconds which will

be stored in max_time as a string.

7.4.11 Replace Special Characters

Function 11 Replace special characters.

acpwe = module_process_subtitles.remove_or_replace_special_char(INPUT_SUB_

LIST = acpwe, CHAR_TO_REPLACE = 'all', CHAR_TO_REPLACE_WITH = '')

Function 11 is used to replace special characters (Variable 3) of the variables

listed in Table 3. This is an important step as it prevents many syntax errors due to

the handling of these special characters from following processes such as slicing the

samples. For instance the quote character (‘) which is commonly present in text is

also used by python to interpret the beginning and ending of strings. The argument

INPUT_SUB_LIST handles one of the variables (at a time) created by Function 9

which contains either sentence or word subtitles. Function 11 performs character

replacement onto that variable. The output variable is identical to the value of the

INPUT_SUB_LIST with the specified character(s) removed or replaced. The

argument CHAR_TO_REPLACE specifies which character is to be replaced from

INPUT_SUB_LIST and CHAR_TO_REPLACE_WITH the replacement character. The

function is capable of substituting and replacing any character which can be

interpreted by python 3.

The function makes underline use of the built in function .replace() which is

capable of replacing characters within strings. Apart from replacing single

characters, the function is capable of replacing all special characters simply by

specifying the value ‘all’ to the argument CHAR_TO_REPLACE. The special characters

which will be replaced are listed in Variable 3 which can be generated using the

string.punctuation() command. Hence, the string ‘all’ is reserved and cannot not be

28

substituted. However, as the string ‘all’ does not contain any special characters there

is no need for it to be replaced, as it is incapable of introducing unexpected system

errors.

 Variable 3 Special characters replaced by Function 11.

For the sake of simplicity the default value replaces all special characters.

However, the best approach would be to replace special characters contained

within the subtitles with code strings. Once all processes which require subtitle

manipulations have completed, the Function 11 could be used again to replace the

code strings back to the special characters.

7.4.12 Save Subtitles

Function 12 Save subtitles.

module_save_variables.save_sub(VAR_INPUT=acpwe, FILE_NAME=INPUT_FILE_NAME+

'_acpwe', TXT=False, JSON=True, TXT_SEPARATOR = '\n')

 Function 12 saves the formatted subtitles (output of Function 11) locally which

contain the subtitles pre-sentence or per-word. The VAR_INPUT argument specifies

which subtitle variable to save. The TXT and JSON arguments specify two potential

save formats and the TXT_SEPARATOR argument specifies how the list specified in

VAR_INPUT will be assembled into a single and continuous string which will be

stored in the text file.

7.4.13 Chopped Sample Folder

Function 13 Generate chopped sample folder.

chopped_sample_per_word_folder_dir_acpwe = module_sample_name.folder_gen(R

ANDOM_STRING = FOLDER_PATH + '/chopped_samples_per_word_acpwe', FILE_PERMI

SION = '777')

Function 13 automatically generates a folder in which sliced segments of the

video will be contained. The argument RANDOM_STRING sets the name (absolute

path) of the generated folder and the output

‘chopped_sample_per_word_folder_dir_acpwe’ contains the folder’s absolute

path.

'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

29

7.4.14 Slicing

Function 14 Slice the video into segments.

word_chunk_samples_info_acpwe = module_video_processing.chop_video_per_wor

d_or_sentence(LIST_PER_WORD = acpwe, TIMES_PER_WORD = atpwe, MAX_TIME = ma

x_time, FILE_NAME = INPUT_FILE_NAME, CHOPPED_SAMPLE_FOLDER_DIR = chopped_

sample_per_word_folder_dir_acpwe, SAVE_FILE_NAME = chopped_sample_per_word

_folder_dir_acpwe + '/word_chunk_samples_info_acpwe.csv', SHIFT_RIGHT_OR_L

EFT = 0, EXTEND_LEFT = -150, EXTEND_RIGHT = 150, EXTENSION = '.mkv',

START_INDEX = 0, STOP_INDEX = 5, SAVE = True)

Function 14 makes underline use of FFmpeg to slice the video into segments

per word or per sentence depending on what variables are passed (acpwe, acpse,

atpwe etc.) to arguments LIST_PER_WORD and TIMES_PER_WORD. The function

does not remove or edit the original file as it creates mere copies at the time

boundaries specified in TIMES_PER_WORD. The output of Function 10 is passed to

the argument MAX_TIME, FILE_NAME specifies the absolute path of the whole video

and EXTENSION the file’s extension. The argument

CHOPPED_SAMPLE_FOLDER_DIR specifies the directory folder to save the

generated segments. SAVE_FILE_NAME will be used as the name of the csv file to

save the file names of the generated segments if the SAVE argument is set to True.

The function slices each word or sentence in accordance to the corresponding

boundaries contained in TIMES_PER_WORD. The SHIFT_RIGHT_OR_LEFT argument

allows the user to apply shifting onto the slicing time values (both start and stop

values). EXTEND_LEFT shifts only the start value whereas EXTEND_RIGHT shifts only

the stop value. All operations which alter the slicing positions require an integer

input and correspond to millisecond shifts. The START_INDEX and STOP_INDEX

specify the range of words to be sliced by index according to the value passed to the

argument LIST_PER_WORD. For instance, the default values (START_INDEX = 0 and

STOP_INDEX = 0) will produce segments containing the words or sentences in the

list shown on Figure 9. The function is capable of slicing any available format

supported by FFmpeg.

If shifting, which exceeds the boundaries of the video is applied, the function

will slice only up to the last possible value on that segment. For example if the

resulting extensions and shifts from arguments SHIFT_RIGHT_OR_LEFT,

EXTEND_LEFT and EXTEND_RIGHT result in slicing at 400 seconds when the whole

video is only 390 seconds long, the slicing will occur at 390 seconds.

The output of the function is a pandas (python 3 module) dataframe as shown

in Figure 14 which contains useful information of the segments such as the absolute

path, duration, content etc.

30

Figure 14 Function 14 output, segment info dataframe.

Figure 15 shows a segment produced from Function 14. Segment names are

automatically generated in the following format

‘AUTO/MAN_SEGMENT_word/sentence _index.extension’. The first word is used to

distinguish which subtitle type the segment belongs too, AUTO for automatically

generated or MAN for manually added by the owner. The second word, SEGMENT,

separated by an underscore and it is added to all segments indicating that the

current file is a segment and not the file. The third word contains the word been

spoken within the segment file, if a sentence is been spoken the words are separated

by a hyphen (e.g. hi-there). The fourth and final value prior the extension of the file

is a number which specifies the index of the word in the input of LIST_PER_WORD.

Keeping a record of

the index could be

used to track the

prior and upcoming

words which is

important as it could

be used to investigate

coarticulation. The

segment in Figure 15

contains only the

word ‘cyber’ which

was spoken in less

than 1000

milliseconds causing

the end value of the

video to display

00:00. Figure 16

shows an example end-result of Function 14.

Figure 15 Example of a segmented sample produced

from Function 14.

31

7.4.15 Final Result Folders

Function 15 Pure audio and video folder generation.

chopped_sample_per_word_folder_dir_pure_audio_acpwe = module_sample_name.fo

lder_gen(RANDOM_STRING = chopped_sample_per_word_folder_dir_acpwe + '/pure_

audio', FILE_PERMISION = '777')

 chopped_sample_per_word_folder_dir_pure_audio_acpwe = module_sample_nam

e.folder_gen(RANDOM_STRING = chopped_sample_per_word_folder_dir_acpwe + '/p

ure_audio', FILE_PERMISION = '777')

Function 13 is run again as shown in the block of Function 15 to generate new

folders named ‘pure_audio’ and ‘pure_video’ shown on Figure 16. In this folders the

following end-results will be stored: 1) pure audio segmented files, 2) pure video

segmented files and 3) pure video cropped segmented files. Function 15 outputs the

absolute paths of the folders and stores them in the variables assigned.

7.4.16 Final Audio Files

Function 16 Extract the audio.

module_video_processing.extract_audio_from_list_mkv_files(INPUT_FILE_NAME =

 LLIST_INPUT_WORD_CHUNK_SAMPLES_ACPWE_FILE_NAMES, OUTPUT_FILE_NAME = LIST_O

UTPUT_AUDIO_WORD_CHOPPED_ACPWE_NAMES, BIT_RATE = '192000')

Function 16 extracts the audio from the segmented files and stores them into

the folder named pure_audio with the use of FFmpeg. The function’s arguments

INPUT_FILE_NAME and OUTPUT_FILE_NAME accept variables in the form of lists

which contain the input video file names and the desired output audio names. Hence,

all segments are converted with the use of a single function. The format of the audio

files is specified by including the desired extension in the output file names. The

BIT_RATE argument specifies the bit rate of the newly created files. Figure 17 shows

an example output result of Function 16.

 Figure 16 Example output file segments generated by Function 14.

32

Figure 17 Example result of pure audio generated segment file from the

YouTube video: https://www.youtube.com/watch?v=kayOhGRcNt4 .

7.4.17 Remove Audio

Function 17 Remove the audio.

module_video_processing.remove_audio_from_list_mkv_files(INPUT_FILE_NAME =

LLIST_INPUT_WORD_CHUNK_SAMPLES_ACPWE_FILE_NAMES, OUTPUT_FILE_NAME = LIST_OU

TPUT_VIDEO_WORD_CHOPPED_ACPWE_NAMES)

Function 17 with the use of FFmpeg produces a copy of the video stream of the

segmented file names and stores the result into the pure_video folder. Similarl to

Function 16, Function 17 accepts list variables for arguments INPUT_FILE_NAME and

OUTPUT_FILE_NAME which contain the paths of the input and output files. The

desired output format is specified from the extension included in the output file

name. An example result is shown in Figure 18.

Figure 18 Pure video segments produced by Function 17.

7.4.18 Face Recognition and Cropping

Function 18 Crop and extract facial landmarks.

pure_video_cropped_word_chunk_samples_info_acpwe = module_face_detection.mu

ltiple_file_camera_face_rec_and_cropping(LIST_OUTPUT_FILE_NAME = LIST_OUTPU

T_VIDEO_WORD_CHOPPED_ACPWE_NAMES, LIST_OF_INPUT_FILE_NAME = LIST_OUTPUT_VID

EO_WORD_CHOPPED_ACPWE_NAMES, FOURCC1='M', FOURCC2='J', FOURCC3='P',FOURCC4

='G', ADD_STR_CROPPED_FILE_NAME = '_cropped', INPUT_FILE_NAME_EXTENSION = '

.mkv', OUPUT_FILE_NAME_EXTENSION = '.avi', CROPPED_WIDTH = 110, CROPPED_HEI

GHT = 105, SHIFT_RIGHT = -50, SHIFT_DOWN = 0, OUTPUT_FPS = 'same',

ENABLE_FACE_RECOGNITION_TRACKING_CROPING = True, WHOLE_FACE_PROFILE = False

, LIPS_PROFILE = False, LOAD_FACE_LANDMARKS = True, POINT_LAND_MARK_TRACKIN

G = False, LAND_MARK_TRACKING_NUMBER = 1, LAND_MARK_LIP_TRACKING = True, CA

PTURE_FACE_LANDMARKS = True, DISPLAY_FACE_LANDMARKS = False, SAVE_LANDMARK_

33

TRACKING_RESULTS = False, SAVE_LANDMARK_TRACKING_RESULTS_NAME = 'Record', S

AVE_WHOLE = False, SAVE_CROPPED = True, DISPLAY_WHOLE = False, DISPLAY_CROP

PED = False, ENABLE_CUBIC_LAND_MARK_TRACKING = False, CUBIC_LAND_MARK_POINT

_TOP = 34,CUBIC_LAND_MARK_POINT_LEFT = 49, CUBIC_LAND_MARK_POINT_BOTTOM = 9

, CUBIC_LAND_MARK_POINT_RIGHT = 55, FLIP = True, FLIP_ARGUMENT = 1, SHAPE_P

REDICTOR_NUMBER_OF_LANDMARK_POINT_START = 48, SHAPE_PREDICTOR_NUMBER_OF_LAN

DMARK_POINT_STOP = 68)

 Function 18 applies face recognition, extracts facial landmarks and creates

new files containing only the cropped region of the lips as shown on Figure 19.

By making use of the cv2 python library the function decodes files and

processes each frame separately. The function contains a wide range of options

which could be used to customise the output. The function is capable of handling

multiple files simultaneously and hence the function only needs to be called once.

The LIST_OF_INPUT_FILE_NAME contains the absolute path of the files in the form

of a list and the INPUT_FILE_NAME_EXTENSION their extension. The

LIST_OUTPUT_FILE_NAME requires a list of the output file names and

OUPUT_FILE_NAME_EXTENSION their extension. The function supports

SAVE_WHOLE and SAVE_CROPPED options which save the results as whole frames

(same as input) or cropped frames (desired result). In case both saved arguments

are set to True, the argument ADD_STR_CROPPED_FILE_NAME allows the user to

add a string at the end of the cropped output file names to prevent some of the files

been over written due to the same assigned name. In addition, by doing so, the

output file names could share the same names as the input filenames with the

distinction of the additional string at the end. Figures 18 and 20 show an example

where the additional string is ‘_cropped’ is added to the newly created files.

Figure 19 Example result produced by Function 18. The same sample

shown in Figure 15 was processed to produce the result of Figure 19.

34

 The argument OUTPUT_FPS specifies the fps of the output video. The

argument accepts an integer value and it is important to encode the video with the

same fps as the input files. The fps of the downloaded video can be found from the

output of Function 3. In addition, by assigning the string ‘same’ to the argument

OUTPUT_FPS the function is programed to detect and automatically assign the input

fps to the output file.

The FFOURCC arguments specify the form of compression. The default value

is set to ‘MJPG’. Other formats could be specified (Appendix 12.7) such as ‘RGBA’

which is an uncompressed lossless format.

7.4.18.1 Face Cropping Options

Function 18 provides a wide range of face cropping options to allow the user

to customize the dataset to their preference by containing only the necessary parts

of the face. By storing the samples containing only the region of the mouth the

identity of the people in the video is protected in addition to the reduction of used

space. For instance, Figure 19 contains the person shown in Figure 15, without

providing any other information such as the origin of the video, it is very difficult to

recognise a person merely from Figure 19. This feature becomes extremely

important if local recordings take place (6.2 Design Matrix approach 2) in order to

meet the ethical requirements mentioned in section 5. Function 18 supports real

time recording and it is activated by

passing the 0 integer value to the

argument

LIST_OF_INPUT_FILE_NAME.

However, this should only be used to

test the various settings of the

function and not for the purpose of

enlarging the dataset for the

reasons described in paragraph

6.2.1. The DEMO_face_detect.py file

essentially consists of various pre-

Figure 20 Cropped samples produced by Function 18.

Figure 21 Disabled face recognition and

extracting a fixed pre-defined square.

35

set example settings of Function 18 and their descriptions which could be tested. By

assigning the True value to arguments DISPLAY_WHOLE and DISPLAY_CROPPED the

processing and effect of other settings onto the video can be displayed in real time.

The FLIP argument enables the flipping of the frames and the FLIP_ARGUMENT

sets the axis in which they will be flipped (0: vertical, >0: horizontal and <0 both).

The argument ENABLE_FACE_RECOGNITION_TRACKING_CROPING enables

or disables the face recognition. In Figure 21, face recognition is disabled and the

function records a pre-fixed rectangular region at the centre of the display. The

reticular region is programed to adjust itself to the centre regardless of the

dimensions of the captured display (position is not hard coded).

However, the user has the ability to change the position of the rectangle using

the SHIFT_RIGHT and SHIFT_DOWN arguments. The arguments accept integer

values and displace the rectangle per pixel. The size of the desired cropped region

can be adjusted through the CROPPED_WIDTH and CROPPED_HEIGHT arguments.

The arguments accept integer values and adjust the rectangle per pixel.

If the ENABLE_FACE_RECOGNITION_TRACKING_CROPING is set to True, face

recognition is deplyed with the use of

dlib.get_frontal_face_detector(). The

detector outputs the upper left and

lower right coordinates of a rectangle

which enclose the face of a person in

the video. By using those coordinates

in a combination to shifting and sizing,

the cropped region can be adjusted to

capture specific parts in the frame

such as the region of the lips. Two pre-

configured profiles have been

developed in Function 18. The profiles

are tweaked to crop the region of the

lips (Figure 22) and of the whole face

(Figure 23). Only one of the profiles

can be used at a time and are set by

assigning the True value to arguments

WHOLE_FACE_PROFILE and

LIPS_PROFILE. Figures 22 and 23

demonstrate the profiles.

Figure 22 Crop the region of the lips profile

(LIPS_PROFILE = True).

Figure 23 Crop the whole face profile

(WHOLE_FACE_PROFILE = True).

36

7.4.18.2 Facial landmarks

According to the literature, facial landmarks can be used to solve lip-reading,

perform face tracking and identify the speaker in a video (2) (14). The Tool makes

use of the 68 point landmark predictor which is loaded from the file

‘shape_predictor_68_face_landmarks.dat’ (44). Other predictors capable of

identifying more facial points could have be used. However, the particular predictor

is used as it is pre-trained (does not require training on a face recognition dataset)

and is freely available on GitHub [43]. By assigning the LOAD_FACE_LANDMARKS

argument to True, Function 18 loads the facial landmarks using the function

‘dlip.shape_predictor()’. The argument CAPTURE_FACE_LANDMARKS enables the

capturing of facial landmarks

and must be set to True in order

to capture the landmarks. The

DISPLAY_FACE_LANDMARKS

paints the landmark points onto

the frames and should only be

used for testing and

demonstration purposes. The

function allows the user to

specify the range of landmarks

to be detected. Figure 24 shows

the position and numerical label

of each landmark for the

particular predictor. The

argument SHAPE_PREDICTOR_NUMBER_OF_LANDMARK_POINT_START sets the

start landmark and SHAPE_PREDICTOR_NUMBER_OF_LANDMARK_POINT_STOP

the stop landmark. According to

Figure 24, the range of

landmarks which cover only the

region of the lips start at number

49 and end at 68. Figure 26

shows the implementation of

extracting landmarks at the

region of the lips and Figure 25

of the whole face. This an

important feature as it prevents

the identification and storage of

Figure 24 Label and position of each landmark (43).

Figure 25 Extraction of whole face landmarks and

tracking per landmark.

37

full facial landmarks which could be used to UI a person.

Landmark coordinates

could also be used to track and

crop parts of the face as an

alternative method to face

recognition points. The

displacement of landmark

points between consecutive

frames is much smaller than the

displacement of face

recognition coordinates. As a

result, tracking with the use of

landmark points produces a

more stable result. However, this holds true only for landmark points such as point

labelled 28 (Figure 24) which mimic the face’s movements and are not respectively

influenced by of the movements of facial muscles.

By assigning POINT_LAND_MARK_TRACKING equals to True the

WHOLE_FACE_PROFILE and LIPS_PROFILE become redundant and tracking is

performed based on the specified landmark point assigned to argument

LAND_MARK_TRACKING_NUMBER.

The argument LAND_MARK_LIP_TRACKING is a pre-set profile which applies

tracking and cropping at the region of the lips (shown on Figures 25 and 26) with

the use of the landmark point labelled 34 on Figure24. Shifting and enlargement

functions of the cropped region can also be applied in parallel, as shown in Figure

27. Landmark point tracking could also be deployed if CAPTURE_FACE_LANDMARKS

is set to False.

Figure 26 Extraction of lip landmarks and

tracking per landmark.

Figure 27 Exceeding the camera boundaries on the x-axis.

38

The final feature Function 18 supports for cropping the frames is the cubic

landmark tracking. By assigning argument ENABLE_CUBIC_LAND_MARK_TRACKING

to True, the shifting and fixed size of the cropped region is disabled and the cropped

rectangular region is defined by four landmark points. All sides of the rectangle are

specified from the following arguments CUBIC_LAND_MARK_POINT_TOP,

CUBIC_LAND_MARK_POINT_LEFT, CUBIC_LAND_MARK_POINT_BOTTOM and

CUBIC_LAND_MARK_POINT_RIGHT. These arguments accept numerical integer

values from the label shown in Figure 24. Figures 28 and 29 demonstrate the

behaviour of this setting and how the cropped region alters its shape.

Figure 28 Cubic landmark tracking

phase 1.

Figure 29 Cubic landmark tracking

phase 2.

Finally, Function 18 supports features to save the landmark coordinates per

frame locally by setting the argument SAVE_LANDMARK_TRACKING_RESULTS

equals to True and specifying the desired file name in

SAVE_LANDMARK_TRACKING_RESULTS_NAME.

 Most figures have been produced by executing Function 18 using the

demonstration file named DEMO_face_detection.py.

Figure 30 demonstrates the implementation of the cubic landmark tracking

feature of Functions 18 into a locally stored file downloaded from Youtube. This

serves as a proof of the concept that Function 18 handles real time streams and video

files the same way and hence functions developed in the demo file using a live

recording maybe implemented to the Tool without any changes or adjustments.

39

7.4.19 End Results

When all of the Tool’s procedures are executed in the following order the end

results are:

1. The sliced and cropped videos per word or/and per sentence produced by

Function 18 and stored in the folder ‘pure_video’ (Figure 20).

2. The sliced audio files per word or/and per sentence produced by Function 16

are stored in the folder ‘pure_audio’ (Figure 17).

3. The Variable 4, dir_name_dictionary, was created which is shown in Figure 31

contains the absolute paths of all AV files.

4. The Variable 5 Cropped_chunk_info_dict shown in Figure 33 which contains

all of the useful information per samples such as landmark position, fps, ratio

of faces detected per frame etc. was created.

Due to the size and complexity of the program the useful information about

the dataset was gathered and stored in Variables 4 and 5 which have been created

to help the user to find easily the useful information they need.

7.4.19.1 Variable with All File Paths

Variable 4 Variable dir_name_dictionary.

dir_name_dictionary = {'whole_files_name_dir' : whole_files_name_dir, 'chop

ped_files_name_dir' : chopped_files_name_dir, 'chopped_pure_audio_files_nam

e_dir' : chopped_pure_audio_files_name_dir, 'chopped_pure_video_files_name_

dir' : chopped_pure_video_files_name_dir, 'chopped_cropped_pure_video_files

_name_dir' : chopped_cropped_pure_video_files_name_dir}

Figure 30 Implementation of Function 18 cubic landmark tracking on a video

with the URL: https://www.youtube.com/watch?v=6cXdS_qVfUc.

40

Variable 4 was created with the purpose grouping all of the filenames’ absolute

paths into a single variable. Figure 31 shows the first layer of the dictionary variable,

the key array contains the names assigned to each row. The key-names in Figure 31

are self-explanatory, further descriptions along with the functions which created

them are listed in Table 4 in the Appendix 12.9.

Figure 31 First layer of variable 4.

Figure 32 shows an example of the variable expanded at multiple layers up to

the root which contains the absolute path of a file. The second layer, as show in

Figure 32, classifies the files per subtitles which are listed in Table 3 (acpwe, acpse

etc.). If files do not exist for particular subtitle types such as acpse etc. they are

assigned with an empty list (square brackets ’[]’). The third and final layer contains

the absolute paths for each segment.

7.4.19.2 Variable with All Information Per segment

Variable 5 cropped_chunk_info_dict.

cropped_chunk_info_dict = {'acpwe' : cropped_chunk_info_list[0], 'mcpwe':

cropped_chunk_info_list[1], 'acpse':cropped_chunk_info_list[2], 'acpsh':cr

opped_chunk_info_list[3], 'mcpse':cropped_chunk_info_list[4], 'mcpsh':crop

ped_chunk_info_list[5]}

Figure 32 Contents of dir_name_dictionary variable.

41

Variable 5 contains all the useful information for all the cropped files produced

by Function 18. The first layer of the variable classifies the subtitles per type such as

acpwe, mcpwe etc. If a particular subtitle type does not exist, similar to Variable 4 it

is assigned square empty brackets. The second layer shown in Figure 33 contains all

the useful information about the segments of the subtitle type selected.

Figure 33 cropped_chunk_info_dict.

Each key consists of a list of 5 values since 5 segmented files have been

inputted (in this example) into Function 18 and the output is 5 cropped segments. If

a greater number of files are processed the lists will simply expand further. The

order of each piece of information contained in the lists which is shown in Figure 33

corresponds to the order of the processed samples from Function 18. For instance,

with reference to Figure 33, the first sample file contains 96 frames, the second 68

and etc.

The first key LIST_CROPPED_VIDEO_FILENAME contains the absolute paths of

each file produced by Function 18 (the files show in Figure 20). The same information

is contained in Variable 4. The second key LIST_OF_INPUT_VIDEO_FPS contains the

fps of the inputted videos. The program identifies the fps of the input video and uses

the result to 1) re-encode the video to the same frame rate and 2) to find the time

between frames and assign it to the eighth key

TIME_BETWEEN_FRAMES_IN_SECONDS. When a recording is made through the

use of a local camera (live

recording) the value assigned to

the second key is based on the

specifications of the camera.

However, this value should not be

used as it is inaccurate for live

recordings due to the many

processes (face recognition,

cropping etc.) of Function 18 which

delay the capture of the frames. When local recordings take place, the fourth key

Figure 34 LIST_OF_LAND_MARK_RESULTS

contents.

42

named LIST_OF_MEASURED_FPS should be used instead, which contains the actual

fps of the video. The value in LIST_OF_MEASURED_FPS is calculated by measuring

the number of frames stored in the sixth key LIST_OF_NUMBER_OF_FRAMES and

dividing that result with the fifth key

LIST_OF_MEASURED_RECORDING_PROCESSING_TIME (𝐹𝑃𝑆 =
𝑓𝑟𝑎𝑚𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
). Hence, by

measuring the recording time and frames contained in a video the FPS can be found.

The seventh key LIST_RATIO_OF_DETECTED_FACES_PER_FRAME contains the

ration between how may frames a face is detected divided by the total number of

frames in the sample,
𝑓𝑟𝑎𝑚𝑒𝑠 𝑎 𝑓𝑎𝑐𝑒 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠
. The third key

LIST_LAND_MARK_RESULTS contains dataframes for each sample as shown on

 Figure 34. Figure 35 shows a landmark dataframe of an example sample.

The first column of the dataframe, names ‘Frame Index’, contains the index

(numerical order) of each frame in the sample and each row contains the

information about the frame.

The second column, ‘LIST_FACE_DETECTION_RESULT_PER_FRAME’, contains

the result of the face recognition algorithm for every frame. If a face is identified the

True value is assigned and if not, the False value is assigned. The values assigned to

the first and second columns are used to compute the

LIST_RATIO_OF_DETECTED_FACES_PER_FRAME values (Figure 33). The results are

important as they could be used in the future as a form of criterion (threshold) to

Figure 35 An example segment landmark dataframe.

43

automatically remove any of the samples which contain a threshold lower than the

expected value,
𝑓𝑟𝑎𝑚𝑒𝑠 𝑎 𝑓𝑎𝑐𝑒 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠
< 𝑡ℎ𝑟𝑒𝑎𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒.

The third column ‘X-Y Land

Mark Coordinates’ contains the x and

y position of each landmark per

frame. Figure 36 shows the positions

of the x and y coordinates per

landmark when only 3 landmark

points are extracted by Function 18.

The fourth column named

‘LAND_MARK_TIME_LENGTH_ARRAY’ contains the time stamps of each

frame/landmark (position) in the video. Hence, with the information of the landmark

positions and their time values the temporal signal (rate of change of x or/and y

against time) can be extracted. This signal can be used similarly to an audio signal to

train and test ML models for lip-reading. In addition, the segmented and cropped

files (Figure 20) can also be used to train and test lip-reading ML models.

7.4.19.3 Save End Results

Function 19 Save cropped_chunk_info_dict variable.

module_save_variables.save_pandas_dict_results(VAR_INPUT = cropped_chunk_i

nfo_dict, FILE_NAME = FOLDER_PATH + '/cropped_chunks_info_dict', CSV=True,

 TXT=True)

Function 16 is the final function which is being executed. The function attempts

to save all the information which is contained in the variable

cropped_chunk_info_dict locally and thus be able to access the results even after

the program has terminated. Unfortunately, due to the structure of the variable

which consists of multiple dictionaries and dataframes (as shown in Figures 33, 34

and 35), the stored format of the variable is difficult to read. In future development,

the information should be added into an SQL dataset in which the format of the

variable can be preserved. Function 19 supports two save formats, as a form of a csv

file or as a text file. Saving the results as a csv file will preserve more information and

the structured format than as a text file.

Figure 36 Notation of landmark coordinate for

three loaded landmarks.

44

8 TESTING

The software has gone through essential functionality tests to ensure it is

compatible with most videos on YouTube. The Tool has been tested on 25 different

YouTube videos from different channels (Appendix 12.5). The videos covered a range

of different lengths, frame rates and resolutions in order to ensure compatibility

with various different settings. The Tool was capable of automatically downloading,

extracting and modifying the content successfully for 20 of them. The remaining 5

videos either required changes in the default settings or failed due to errors in the

program which should be patched in future versions of the software. Most errors

suggest that the youtube-dl program was unable of download the video based on

the default file format code specified (Function 3) as it is not supported by the

particular videos. For instance the default settings requests from the server a video

with a resolution of 1080p when the maximum available resolution is only 720p etc.

 The slicing of videos was tested for a range of different times across each

video including their beginning and end. Through initial experimentation it was found

that FFmpeg was inaccurate at slicing the video with millisecond accuracy which is

a vital property. According to the FFmpeg documentation (45), if the name argument

‘-i’ (Function 20) appears first, FFmpeg will slice the video at the closest key-frame

(whole image) to the specified time value. In media files such as mkv, mp4 etc.

compression is applied in order to reduce the files size. Due to compression not all

frames are key-frames, hence to ensure the segmented video produced has not

been corrupted, FFmpeg slices only at the key-frames. To enforce slicing at specific

time boundaries, the start time argument ‘-ss’ in the command must appear first

before the name argument ‘-i’ (Function 5).

Function 20 FFmpeg example.

Slice at key frames only: ffmpeg –i file_name –ss start_time –to stop_time

–c copy file_name

Force slicing at specific time: ffmpeg –ss start_time –i file_name –to

stop_time –c copy file_name

 Figure 37 demonstrates the result of enforcing slicing at a non-key-frame. In

order to overcome the problem of blurry images and non-working files while

ensuring millisecond accuracy the files were converted into raw video format (y4m)

(46). Raw video is a lossless format as it removes the compression and makes each

frame in the video a key-frame (46). This resulted into both accurate slicing and non-

corrupted files at the expense of producing very large files (46).

45

 Through experimentation it was found that when the downloaded files of mp4

format were copied into an mkv format they did not result into corrupted files as

shown on Figures 37 and 38 and the files’ size was preserved. As a result the default

value was set to convert files into mkv format. However, the developed Function 6

allows the Tool to convert from any video format to any other format which is

supported by FFmpeg. This gives the power to the user to configure their dataset on

their preference and in the occurrence of slicing errors the user could easily switch

back to the safe raw video format.

Figure 37 Sliced from mp4 format.

Figure 38 Sliced from mkv format.

The Tool was tested for all possible subtitle types available on YouTube such

as manually added from the owner, automatically generated, subtitles per word or

per sentence. Even though some videos contain both automatically generated

subtitles and subtitles added by the user, Youtube-dl downloads the lateral format

regardless of which subtitle type is requested. Errors imbedded within youtube-dl

can only be resolved from the maintainers of youtube-dl.

During execution of the program update messages are printed to the console

which inform of the current execution stage along with warning messages and of any

potential errors as shown on Figure 39. The printed messages assist in debugging

the program.

Figure 39 Tools procedure updates and warning messages.

46

 Whenever the face exceeds the boundaries captured by the camera alerts are

printed to the console as a form of alert as shown on Figure 40. The axes the face is

off is also printed (Figure 40).

The Tool is designed to apply face recognition and extract landmark points on

frames containing a single head. In many cases a video may contain frames with none

or multiple faces. Figure 41 shows how the program handles this exceptions. Column

1 contains the INDEX of the list, column 2 specifies each frame, column 3 whether or

not a frame is identified on that particular frame, column 4 the extracted facial

landmark points and column 5 the time each frame is displayed in the segment.

 If a face is not detected in the frame, the corresponding cell in column 3

(Figure 41) is assigned with False and on column 4 with None. If a single face is

detected the True Boolean value is assigned to the cell of column 3 and the x-y

landmark positions are assigned to column 4. If more than one face is detected in a

Figure 40 Exceeding the camera boundaries on the y-axis.

Figure 41 Face recognition results per frame.

47

frame, the number of faces detected will be shown in column 4 as shown on index

94. However, when multiple faces are detected, the landmark predictor extracts

facial landmarks from all of the faces. Due to this reason facial landmarks occupy

two cells in column 4 as shown on Figure 41 (rows 94 and 95 in the particular case)

causing its size to be enlarged by one additional value. As a result, all values of column

4 are shifted downwards from the point in which multiple faces are found and

onwards (Figure 41). This causes column 4 to be over extend. As a result, the row of

index 96 is assigned with landmarks while at the same time it does not contain a

frame according to column 2 since it is assigned the ‘nan’ value. In the particular

case, due to the shifting, the landmark coordinates of index 96 correspond (in the

particular case) to the previous frame of index 95. The same behaviour holds applies

for any number of identified faces above one. Currently the Tool does not support

any means of identifying which landmarks correspond to each person and hence

segments which contain multiple faces should be removed. In order to support this

process, apart from specifying the number of detected faces in column 3, if more

than a single faces is detected a warning message with the frame and number of

faces detected will be printed to the console as shown on Figure 42.

Figure 42 Warning message of multiple faces found.

9 FUTURE IMPROVEMENTS

The range of additional features and potential improvements are endless.

However, the remaining features which have been implemented by other pipelines

should be prioritised. These features are alignment of audio signal to text with the

use of P2FA and identification of the speaking head with the use of SyncNet.

48

Due to time limitations many features have been excluded from the program.

The following list contains recommended features and improvements for future

development:

 Include data augmentation functions which will allow the enlargement

of the dataset by adding additional edited versions of the same files. An

example would be to add modified duplicates with a reduced amount of

brightness.

 Improve time performance and reduce the complexity of the code.

 Implementation of automatic transcript validation and automatic

subtitle generation by implementing pre trained voice recognition

algorithms such as DeepSpeech (Mozilla’s ASR model) on the audio

samples (47).

 Develop a MySQL dataset which will include all necessary information

for each file into a modular and easy to read format for multiple URLs.

Such information includes size, total number of files, directory of each

file, number of occurrences of each word, position of each word in the

sentence and more. Essential functionalities such as automatic

updating, version control and recovery of lost files should be included.

 Include additional options to merge sequential words or sentences

together. There for allow more slicing options such as chop for every

two words instead of each word.

 Add a GUI to make the program more approachable and user-friendly.

 Implement more sophisticated face recognition model and a shape of a

greater number of landmark points.

10 LICENSE

Among the many varieties of open-source licences which have been approved

by the open source initiative (OSI). The code of the project is licensed under the MIT

licence and is hosted on GitHub account ‘openmindednewby’ in the repository ‘Tool-

for-creating-lip-recognition-datasets’.

The MIT licence is one of the most popular licences in the open source

community. It allows freedom to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software without any warranty or liability to the

owner for damages.

49

11 SUMMARY

The work conducted resulted to the creation of a non GUI program (Tool)

capable of automatically downloading and processing AV content from YouTube.

Many features have been developed such as:

 Identifying the number of heads in a frame.

 Extracting a desired number of facial land mark points.

 Automatically cropping desired parts of the face such as the lips.

 Splitting of the video into chunks per word or per sentence.

 Shifting and extending slicing boundaries.

 Handling of various subtitle formats.

The Tool has been developed sufficiently to be capable of developing a dataset

suitable for training and testing DNN. As a result the objective of the project has been

met. However, the lack of implementing alignment between AV content to the text

(P2FA) and speaker identification (SyncNet) make the current state of the program

inferior in comparison to the pipelines used to create LRW, LRS2 and LRS3. The

exclusion of these features was based on the design approach of the project which

had ultimately led to the achievement of a viable program. Future work should focus

on implementing alignment and speaker identification features.

The functional structure of the Tool allow it the download and processing of

any YouTube video as well as AV content stored locally. YouTube videos could be

downloaded in a range of resolution qualities up to 4k and frame rates up to 60fps.

Hence, by implementing the lacking features of other pipelines (P2FA and SyncNet)

the Tool has the potential to build more divers, larger and higher quality datasets

than the current state of the art LRW, LRW2 and LRS3.

 The Tool’s function to download online content should be used with caution

and preferably only on non-copyrighted material due to the variations of copyright

legislations between countries. The tool could also be used on any AV content stored

locally as it was designed to process local media files. Hence, downloading YouTube

content may be replaced with local recordings. Additionally, the Tools also produces

audio files per word or sentence which could be used to create an ASR dataset.

The study did not carry out any local recordings despite the development of

features to protect the privacy of participants.

The source code of the Tools is made available for free under the MIT licence

and it is made available through the GitHub in the Appendix 12.4.

50

12 APPENDIX 1.

12.1 MIT Licence

Copyright 2020 Demetrios Loizides

Permission is hereby granted, free of charge, to any person obtaining a copy of

this software and associated documentation files (the "Software"), to deal in

the Software without restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the

Software, and to permit persons to whom the Software is furnished to do so,

subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

51

12.2 Future Software Architecture

Figure 43 Pipeline which incorporates all methods considered.

52

12.3 Projects Gant chart

12.4 Link to Source Code

The latest version of the software can be downloaded from the link

‘https://github.com/openmindednewby/Tool-for-creating-lip-recognition-

datasets’ or by searching the GitHub repository ‘openmindednewby / Tool-for-

creating-lip-recognition-datasets’.

12.5 List of Tested URLs

URLs which work without editing the default settings apart from INPUT_URL and

NNAME variables.

1. https://www.youtube.com/watch?v=6cXdS_qVfUc
2. https://www.youtube.com/watch?v=v2Q3eoUldcE
3. https://www.youtube.com/watch?v=kayOhGRcNt4
4. https://www.youtube.com/watch?v=YHCZt8LeQzI&fbclid=IwAR2e436VcxEB

WWnnz48W2vPU4iTfFpxgglA9U7uIOFP1XCA1sdp4h_qnmLI
5. https://www.youtube.com/watch?v=a1Kxhhmqt8U
6. https://www.youtube.com/watch?v=dRFbwjwQ4VE
7. https://www.youtube.com/watch?v=PpV_5-tCS-c
8. https://www.youtube.com/watch?v=DhYeqgufYss
9. https://www.youtube.com/watch?v=HqI0jbKGaT8&pbjreload=10
10. https://www.youtube.com/watch?v=kR-WCDa4NSc
11. https://www.youtube.com/watch?v=PjQ-AfRNG18
12. https://www.youtube.com/watch?v=PACH0XKozuU
13. https://www.youtube.com/watch?v=ie6lRKAdvuY
14. https://www.youtube.com/watch?v=w2PQEzDawMw
15. https://www.youtube.com/watch?v=5v-wyR5emRw
16. https://www.youtube.com/watch?v=MmFuWmzeiDs
17. https://www.youtube.com/watch?v=3obig1XeOlw
18. https://www.youtube.com/watch?v=Xdzo2dVqNH0
19. https://www.youtube.com/watch?v=m8ZUvBeKZEY
20. https://www.youtube.com/watch?v=uiU5GutVms4

URLs which either require changes to the default settings or improvements
to the code.

1. https://www.youtube.com/watch?v=ZTK8XJUXqy8
2. https://www.youtube.com/watch?v=1mHjMNZZvFo

https://github.com/openmindednewby/Tool-for-creating-lip-recognition-datasets’
https://github.com/openmindednewby/Tool-for-creating-lip-recognition-datasets’
https://www.youtube.com/watch?v=uiU5GutVms4

53

3. https://www.youtube.com/watch?v=ZO44B271tfk
4. https://www.youtube.com/watch?v=z0hrMg1j_d4
5. https://www.youtube.com/watch?v=aeT3YOYsvMs

12.6 Ethical Approval Form

The ethical approval form which was produced through the university of

Sheffield online platform can be found here

https://ethics.ris.shef.ac.uk/ethics_applications/30339.pdf.

12.7 Link to FOURCC Codecs

The following link contains all the available FOURCC codecs which could be

used in Function 18 http://www.fourcc.org/codecs.php

12.8 Demo File Notice

While recording live streams in the file DEMO_face_detect.py, closing the

window which displays what is been recorded does not terminate the application as

the window reopens immediately. In order to terminate the execution appropriately

the display window must be selected and closed by pressing the ‘Q’ key stroke. If the

display window is terminated through alternative methods such as with the use of a

keyboard interruption Ctrl+C, this could cause the execution of python to terminate

without terminating the internal process used to handle the camera. This will cause

the program to fail upon its next execution as the camera is still been reserved by

the previous process. In order to overcome this problem and release the camera,

the python kernel should be restarted.

12.9 Variable 4 Layer 1 Key-Names Descriptions

Table 4 Description of Variable 4 contents.

File Name Description

chopped_cropped_pure_video_files_name_dir Absolute paths of the end

result files produced by

Function 18 and shown on

Figure 20.

https://ethics.ris.shef.ac.uk/ethics_applications/30339.pdf
http://www.fourcc.org/codecs.php

54

chopped_files_name_dir Absolute paths of the sliced

video files produced by

Function 14 and shown on

Figure 14.

chopped__pure_audio_files_name_dir Absolute paths of the sliced

audo files produced by

Function 16 and shown on

Figure 17.

chopped_pure_video_files_name_dir Absolute paths of the sliced

audo files produced by

Function 17 and shown on

Figure 18.

whole_files_name_dir Absolute paths of the whole

files downloaded by

Function 4 and shown on

Variable 4.

13 REFERENCES

1. Automatic Speech Recognition (ASR) . [Online] technopedia, 2019.

[Cited: 09 12 2019.]

https://www.techopedia.com/definition/6044/automatic-speech-

recognition-asr.

2. Zisserman, Joon Son Chung and Andrew. The Oxford-BBC Lip Reading

in the Wild (LRW) Dataset. [Online] 2016. [Cited: 22 01 2020.]

https://www.robots.ox.ac.uk/~vgg/publications/2016/Chung16/chung

16.pdf.

3. Yannis M. Assael, Brendan Shillingford], Shimon Whiteson, Nando de

Freitas. YouTube. [Online] 06 January 2017. [Cited: 09 12 2019.]

https://www.youtube.com/watch?v=YTkqA189pzQ&list=PLXkuFIFnXU

APIrXKgtIpctv2NuSo7xw3k&index=2.

4. Yannis Assael, Brendan Shillingford, Prof Shimon Whiteson and Prof

Nando de Freitas. LipNet: How easy do you think lipreading is? Youtube.

[Online] 04 November 2016. [Cited: 05 12 2019.]

55

https://www.youtube.com/watch?v=fa5QGremQf8&list=PLXkuFIFnXU

APIrXKgtIpctv2NuSo7xw3k&index=1.

5. Joon Son Chung, Andrew Senior, Oriol Vinyals, Andrew Zisserman. Lip

Reading Sentences in the Wild. Department of Engineering Science,

University of Oxford DeepMind. 2017.

6. Balog, Trond Linjordet and Krisztian. Impact of Training Dataset Size

on Neural AnswerSelection Models. University of Stavanger, Stavanger,

Norw. 2019.

7. Lip Reading Datasets LRW, LRS2, LRS3. [Online] [Cited: 19 04 2020.]

http://www.robots.ox.ac.uk/~vgg/data/lip_reading/.

8. Lip Reading in the Wild and Lip Reading Sentences in the Wild Datasets

. [Online] BBC Reaserch & Development, 2020. [Cited: 19 04 2020.]

https://www.bbc.co.uk/rd/projects/lip-reading-datasets.

9. Yannis M. Assael, Brendan Shillingford, Shimon Whiteson, Nando de

Freitas. LipNet: End-to-End Sentence-level Lipreading. [Online] 05

November 2016. [Cited: 2019 12 05.]

https://arxiv.org/pdf/1611.01599.pdf.

10. Paul Duchnowski, Uwe Meier and Alex Waibel. https://www.isca-

speech.org/iscaweb/index.php/archive/online-archive. [Online] 22

September 1994. [Cited: 02 12 2019.]

https://pdfs.semanticscholar.org/16ce/d6a1e6ee2599ce21c2601334cc1

7a0bf102f.pdf.

11. Lipreading with long short-term memory. M. Wand, J. Koutnik and J.

Schmidhuber. 2016, IEEE International Conference on Acoustics, Speech

and Signal Processing, pp. 6115-6119.

12. S. Gergen, S. Zeiler, A. H. Abdelaziz, R. Nickel and D. Kolossa. Dynamic

stream weighting for turbo-decoding-based audiovisual ASR. [Online]

2016. [Cited: 09 12 2019.]

https://pdfs.semanticscholar.org/3087/e40e076b2a7bbb1e7a6efb7779

a941283853.pdf.

13. Vincent, James. Can deep learning help solve lip reading? [Online]

THE VERGE, 07 November 2016. [Cited: 05 12 2019.]

https://www.theverge.com/2016/11/7/13551210/ai-deep-learning-lip-

reading-accuracy-oxford.

56

14. Joon Son Chung, Andrew Senior, Oriol Vinyals, Andrew Zisserman.

Lip Reading Sentences in the Wild. Department of Engineering Science,

University of Oxford. Oxford : DeepMind, 2017.

15. Barker, Martin Cooke and Jon. reaserchgate. [Online] University of

Sheffield, 02 April 2006.

https://www.researchgate.net/publication/6658688_An_audio-

visual_corpus_for_speech_perception_and_automatic_speech_recogni

tion_L/link/5e329ff5458515072d6e8194/download.

16. Barker, Martin Cookea and Jon. An audio-visual corpus for speech

perception and automaticspeech recognition (L). [Online] 02 April 2006.

[Cited: 01 03 202.]

https://staffwww.dcs.shef.ac.uk/people/J.Barker/assets/cooke-2006-

jasa-

ecbf8f7ef7cb429e9621317bfc64a67002a4c465be3c1a3f6144eeed058ee63

4.pdf.

17. Najwa Alghamdi, Steve Maddock, Jon Barker, Ricard Marxer, And

Guy Brown. The Audio-Visual Lombard Grid Speech corpus. [Online] The

University of Sheffield, 2017. http://spandh.dcs.shef.ac.uk/avlombard/.

18. Common Voice. [Online] mozilla, 2019. [Cited: 17 12 2019.]

https://voice.mozilla.org/en/datasets#get-started.

19. Common Voice. [Online] mozilla, 01 05 2020.

https://voice.mozilla.org/en/datasets.

20. Reki, Ahmed. Achraf Ben-Hamadou. [Online] Google Sites. [Cited: 17

12 2019.] https://sites.google.com/site/achrafbenhamadou/-

datasets/miracl-vc1.

21. Chalapathy Neti, Gerasimos Potamianos, Juergen Luettin, Iain

Matthews, Herve Glotin, Dimitra Vergyri, June Sison, Azad Mashari and

Jie Zhou. AUDIO-VISUAL SPEECH RECOGNITION. [Online] 12 October

2000. [Cited: 09 12 2019.]

http://www.cs.cmu.edu/~iainm/papers/ws00avsr.pdf.

22. Triantafyllos Afouras, Joon Son Chung, Andrew Zisserman. LRS3-

TED: a large-scale dataset for visual speech recognit. Visual Geometry

Group, Department of Engineering Science,University of Oxford, UK.

2018.

57

23. Deep Audio-Visual Speech Recognition (LRS2). Triantafyllos Afouras,

Joon Son Chung, Andrew Senior, Oriol Vinyals, Andrew Zisserman. 2018.

24. Zisserman, Joon Son Chung and Andrew. Out of time: automated lip

sync in the wild. Visual Geometry Group, Department of Engineering

Science, University of Oxford. Oxford : s.n., 2016.

25. Wei Liu1, Dragomir Anguelov2, Dumitru Erhan3, Christian

Szegedy3,Scott Reed4, Cheng-Yang Fu1, Alexander C. Berg. SSD: Single

Shot MultiBox Detector. [Online] 22 Dec 2016. [Cited: 01 03 2020.]

https://arxiv.org/pdf/1512.02325.pdf.

26. Fair Use. [Online] YouTube. [Cited: 12 03 2020.]

https://support.google.com/youtube/answer/6396261.

27. Measuring Fair Use: The Four Factors. [Online] Stanford University

Libraries, 2020. [Cited: 12 03 2020.]

https://fairuse.stanford.edu/overview/fair-use/four-factors/.

28. Exceptions to copyright. [Online] gov.uk, 12 June 2019. [Cited: 12 03

2020.] https://www.gov.uk/guidance/exceptions-to-copyright#text-

and-data-mining-for-non-commercial-research.

29. YouTube Help. [Online] YouTube. [Cited: 12 03 2020.]

https://support.google.com/youtube/answer/2797449?hl=en&ref_top

ic=2778546.

30. McCoy, Julia. The 10 Best Image Search Engines. [Online] SEJ, 08

April 2019. https://www.searchenginejournal.com/best-image-search-

engines/299963/.

31. Bypassing Android's Smart Lock using a Photo. [Online] F-Secure, 15

Nov 2017. https://www.youtube.com/watch?v=CKDn1748dFI.

32. Kniberg, Henrik. Making sense of MVP (Minimum Viable Product) –

and why I prefer Earliest Testable/Usable/Lovable. [Online] Crisp's Blog,

25 01 2016. [Cited: 03 03 2020.]

https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-

mvp.

33. Nanouks, Paul. Understanding the Linux mindset. Linux.com.

[Online] The Linux Foundation, 15 February 2010. [Cited: 04 10 2019.]

https://www.linux.com/tutorials/understanding-linux-mindset/.

58

34. Dell Manual. [Online] [Cited: 22 04 2020.]

https://downloads.dell.com/manuals/all-

products/esuprt_laptop/esuprt_inspiron_laptop/inspiron-15-7559-

laptop_reference%20guide_en-us.pdf.

35. The Influence of Video Sampling Rate on Lipreading Performance.

Rothkrantz, Alin G. ChiŃu and Leon J.M. Man-Machine Interaction Group

Delft University of Technology, Delft, The Netherlands : s.n.

36. Salus, Peter H. A Quarter Century of Unix. [Online] 1994. [Cited: 14 10

2019.]

https://wiki.tuhs.org/lib/exe/fetch.php?media=publications:qcu.pdf.

37. The Bell System Technical Joutnal. Douglas, McIlroy. American

Telephone and Tele-graph Company, J. D. deBu, 600 Mountain Ave New

Providence, NJ 07974 USA : American Telephone and Tele-graph

Company, J. D. deBu, 1978, Vols. 57, NO. 6, PART 2. http://emulator.pdp-

11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf.

38. Plauger, Brian W. Kernighan and P.J. THE ELEMENTS OF

PROGRAMMING STYLE. [Online] 1978. [Cited: 14 10 2019.]

http://www2.ing.unipi.it/~a009435/issw/extra/kp_elems_of_pgmng_s

ty.pdf.

39. Raymond, Eric Steven. The Art of Unix Programming. The Art of Unix

Programming. [Online] 2003. [Cited: 14 10 2019.]

https://homepage.cs.uri.edu/~thenry/resources/unix_art/.

40. Gonzalez, Ricardo Garcia. youtube-dl Supported Sites. [Online]

youtube-dl developers , 2020. [Cited: 20 04 2020.] https://ytdl-

org.github.io/youtube-dl/supportedsites.html.

41. mkdir(1) - Linux man page. [Online]

https://linux.die.net/man/1/mkdir.

42. Penn Phonetics Lab Forced Aligner Toolkit (P2FA). [Online]

University of Pennsylvania Department of Linguistics, 2008.

https://babel.ling.upenn.edu/phonetics/old_website_2015/p2fa/read

me.txt.

43. Facial point annotations. Department of Computing, Imperial

College London, Intelligent Behaviour Understanding Group (iBUG).

44. AKSHAYUBHAT. shape_predictor_68_face_landmarks.dat. 2015.

59

45. Seeking. [Online] FFmpeg, 2018.

https://trac.ffmpeg.org/wiki/Seeking.

46. Stoyanov, George. Encode Raw Video. [Online] GitHub, 18 Jun 2018 .

[Cited: 21 04 2020.]

https://github.com/stoyanovgeorge/ffmpeg/wiki/Encode-Raw-Video.

47. mozilla. DeepSpeech. GitHub. [Online] [Cited: 26 10 2019.]

https://github.com/mozilla/DeepSpeech.

48. Impact Wear Testing Machine. Bayer, R G, Engel, P A and Sirico, J L.

1972, Wear, Vol. 19, pp. 343-354.

49. Stachowiak, G W and Batchelor, A W. Engineering Tribology.

Amsterdam : Elsevier, 2005.

50. [Online] https://opensource.org/licenses.

51. Licenses & Standards. Open Source Initative. [Online] [Cited: 04 10

2019.] https://opensource.org/licenses.

52. MAC Technology Overview. documentation archive. [Online] Apple

Inc, 16 09 2015. [Cited: 08 10 2019.]

https://developer.apple.com/library/archive/documentation/MacOS

X/Conceptual/OSX_Technology_Overview/SystemTechnology/System

Technology.html#//apple_ref/doc/uid/TP40001067-CH207-BCICAIFJ.

53. Dolya, Aleksey. Linux Journal. Interview with Brian Kernighan.

[Online] Linux Journal, 29 Jul 2003. [Cited: 08 10 2019.]

https://web.archive.org/web/20171018090033/https://www.linuxjour

nal.com/article/7035.

54. McIlroy, M. Douglas. M. Douglas McIlroy Biography. Department

ofComputer Science, Dartmouth College . [Online] Trustees of

Dartmouth College, May 2019. [Cited: 09 10 2019.]

https://www.cs.dartmouth.edu/~doug/biography.

55. MyoWare Muscle Sensor . Advancer technologies. [Online] Blogger,

2016. [Cited: 11 10 2019.]

http://www.advancertechnologies.com/p/myoware.html.

56. MyoWare Muscle Sensor. sparkfun. [Online] SparkFun Electronics.

[Cited: 11 10 2019.] https://www.sparkfun.com/products/13723.

57. Kaminski, Brian E. AdvancerTechnologies/MyoWare_MuscleSensor.

github. [Online] 26 Jul 2016. [Cited: 11 Oct 2019.]

60

https://github.com/AdvancerTechnologies/MyoWare_MuscleSensor/

raw/master/Documents/AT-04-001.pdf.

58. Krzyzanowski, Paul. C Programming Style. RUTGERS School of Arts

and Sciences. [Online] 1998. [Cited: 14 10 2019.]

https://www.cs.rutgers.edu/~pxk/rutgers/notes/content/Cstyle.pdf.

59. George A. Mille. The Magical Number Seven, Plus or Minus TwoSome

Limits on Our Capacity for Processing Information. Harvard University.

[Online] 15 04 1955. [Cited: 16 10 2019.]

http://www2.psych.utoronto.ca/users/peterson/psy430s2001/Miller

%20GA%20Magical%20Seven%20Psych%20Review%201955.pdf.

60. About the GNU Operating System. GNU Operating System. [Online]

15 12 2018. [Cited: 17 10 2019.] https://www.gnu.org/gnu/about-

gnu.html.

61. Lockney, Dan. Silent Speech. NASA TECHNOLOGY TRANSFER

PROGRAM. [Online] 2005. [Cited: 23 10 2019.] https://ntts-

prod.s3.amazonaws.com/t2p/prod/t2media/tops/pdf/TOP2-131.pdf.

62. Braukus, Michael. NASA News. nasa.gov. [Online] 17 March 2004.

[Cited: 23 10 2019.]

https://www.nasa.gov/home/hqnews/2004/mar/HQ_04093_subvocal

_speech.html.

63. Wiggers, Kyle. Researchers develop offline speech recognition that’s

97% accurate. VentureBeat. [Online] VentureBeat, 22 October 2018.

[Cited: 25 10 2019.] https://venturebeat.com/2018/10/22/researchers-

develop-offline-speech-recognition-thats-97-accurate/.

64. Boyd, Clark. The Startup. Speech Recognition Technology: The Past,

Present, and Future. [Online] 10 Jan 2018. [Cited: 25 10 2019.]

https://medium.com/swlh/the-past-present-and-future-of-speech-

recognition-technology-cf13c179aaf.

65. Hamilton, Andrew. Voice Recognition Technology? In a Lift? IN

SCOTLAND? DIGIT. [Online] DIGIT. [Cited: 25 10 2019.]

https://digit.fyi/microsoft-voice-recognition-accuracy/.

66. Kovo, Yael. NASA TV. Technology Opportunity: Sub-Audible Speech

Recognition Based on Electromyographic Signals. [Online] NASA Ames

Reserch Center, 7 Aug 2017. [Cited: 2019 10 24.]

https://www.nasa.gov/old1/ames-

61

partnerships/technology/technology-opportunity-sub-audible-speech-

recognition-based-on-electromyographic-signals.

67. EMG-Based Speech Recognition Using HiddenMarkov Models With

Global Control Variables. Lee, Ki-Seung. 3, s.l. : IEEE, 2008, Vol. 55.

68. Maier-Hein, Lena. Speech Recognition Using Surface

Electromyography. [Online] Juli 2005. [Cited: 2019 10 30.]

https://www.cs.cmu.edu/~tanja/Papers/DA-MaierHein.pdf.

69. Zwass, Vladimir. Speech recognition TECHNOLOGY. [Online]

ENCYCLOPAEDIA BRITANNICA, 2019. [Cited: 31 10 2019.]

https://www.britannica.com/technology/speech-recognition.

70. Rogers, Kara. Skeletal muscle. BioNinja. [Online] ENCYCLOPÆDIA

BRITANNICA, 2019. [Cited: 25 10 2019.]

https://www.britannica.com/science/skeletal-muscle.

71. —. Electromyography. [Online] ENCYCLOPÆDIA BRITANNICA, 2019.

[Cited: 14 11 2019.]

https://www.britannica.com/science/electromyography.

72. Principal envelope model. Jia Zhang, Xin Chen. 2019, Journal of

Statistical Planning and Inference.

73. Vincent, James. Google’s AI can now lip read better than humans

after watching thousands of hours of TV. [Online] 24 November 2016.

[Cited: 03 12 2019.]

https://www.theverge.com/2016/11/24/13740798/google-deepmind-ai-

lip-reading-tv.

74. Lip Reading Sentences in the Wild. Joon Son Chung, Andrew Senior,

Oriol Vinyals and Andrew Zisserman. 2016, Vol. 1, pp. 1-8.

75. Barker, Jon. The GRID audiovisual sentence corpus. [Online] 18

March 2013. [Cited: 04 12 2019.]

http://spandh.dcs.shef.ac.uk/gridcorpus/.

76. Zeb, Yasir. LipNET: A Lipreading Technology Revealed By The

Researchers. [Online] rs.news, 31 August 2016. [Cited: 05 12 2019.]

https://pdfs.semanticscholar.org/291c/0e453503a704c0fd932a067ca0

54cc7edad6.pdf.

77. Confusions among visually preceived consonants. Fisher, G. 11, 1968,

Journal of Speech, Language and Hearing, Vol. 4, pp. 796-804.

62

78. Perceptual dominance during lipreading. Basala, R. D. Easton and M.

6, 1982, Perception & Psychophysics, Vol. 32, pp. 562-570.

79. Connectionist temporal classification. A Graves, S. Fernandez, F.

Gomez and J. Schmidhuber. 2006, Labelling unsegmented sequence data

with recurrent neural networks, pp. 369--376.

80. Gregersen, Erik. ENCYCLOPAEDIA BRITANNICA - Judea Pearl .

[Online] [Cited: 13 12 2019.]

https://www.britannica.com/biography/Judea-Pearl#ref1174347.

81. Erik Gregersen. ENCYCLOPÆDIA BRITANNICA - Bayesian analysis .

[Online] [Cited: 13 12 2019.]

https://www.britannica.com/science/Bayesian-analysis.

82. CC0 1.0 Universal. [Online] Creative Commons. [Cited: 17 12 2019.]

https://creativecommons.org/publicdomain/zero/1.0/legalcode.

83. Awni Hannun∗, Carl Case, Jared Casper, Bryan Catanzaro, Greg

Diamos, Erich Elsen,Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta,

Adam Coates, Andrew Y. N. Deep Speech: Scaling up end-to-endspeech

recognition. [Online] Baidu Research – Silicon Valley AI Lab, 19 December

2014. [Cited: 17 12 2019.] https://arxiv.org/pdf/1412.5567.pdf.

84. Dim, Foti. DeepSpeech on Windows WSL. [Online] Medium, 06

December 2017. [Cited: 18 12 2019.] https://fotidim.com/deepspeech-

on-windows-wsl-287cb27557d4.

85. mozilla. Project DeepSpeech. [Online] GitHub, 18 12 2019. [Cited: 18 12

2019.] https://github.com/mozilla/DeepSpeech.

86. Livingstone, Frank A. Russo and Steven R. YouTube. [Online]

Department of Psychology, Ryerson University, Toronto, Canada,

Department of Computer Science and Information Systems, University

of Wisconsin-River Falls, Wisconsin, WI, United States of America , 16

May 2018. [Cited: 19 12 2019.]

https://www.youtube.com/watch?v=0rvNpbucZOg.

87. Dump, Brain. The Black Magic of Deep Learning - Tips and Tricks for

the practitioner . [Online] EnVision , 21 February 2017. [Cited: 19 12 2019.]

https://nmarkou.blogspot.com/2017/02/the-black-magic-of-deep-

learning-tips.html.

63

88. Machine Learning Repository. [Online] University of California,

Irvine. [Cited: 20 01 2020.]

https://archive.ics.uci.edu/ml/datasets.php?format=&task=&att=&ar

ea=&numAtt=&numIns=&type=&sort=nameUp&view=list.

89. Standford. [Online] [Cited: 22 01 2020.]

http://web.stanford.edu/class/archive/cs/cs166/cs166.1146/lectures/

09/Small09.pdf.

90. Seebibyte. [Online] University of Oxford. [Cited: 22 01 2020.]

http://www.robots.ox.ac.uk/~vgg/projects/seebibyte/index.html.

91. Kazemi, V., Sullivan, J. One millisecond face alignment with an

ensembleof regression tree. [Online] 2014. [Cited: 24 01 2020.]

http://www.nada.kth.se/~sullivan/Papers/Kazemi_cvpr14.pdf.

92. Microsoft Reasearch. [Online] Microsoft, 2018. [Cited: 24 01 2020.]

https://msropendata.com/categories.

93. Lip Reading Sentences 3 (LRS3) Dataset. [Online] Visual Geometry

Group. , 2018. [Cited: 18 02 2020.]

https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs3.html.

94. Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

International Public License. [Online] Creative Commons. [Cited: 18 02

2020.] https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.

95. Common Voice. [Online] Mozilla. [Cited: 20 02 2020.]

https://voice.mozilla.org/en.

96. Rosebrock, Adrian. Facial landmarks with dlib, OpenCV, and Python.

[Online] oyunagesearch, 03 April 0217. [Cited: 21 02 2020.]

https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-

opencv-python/.

97. dLIB C++ Library. [Online] 14 Dec 2019. [Cited: 32 02 202.]

http://dlib.net/.

98. Face detector. [Online] Dlib. [Cited: 21 02 2020.]

http://dlib.net/face_detector.py.html.

99. Introduction to the Second Edition of the Oxford English Dictionary.

[Online] Oxford University Press, 2020. [Cited: 25 02 2020.]

https://public.oed.com/history/oed-editions/introduction-to-the-

second-edition/.

64

100. Dictionaries, Oxford. Concise Oxford English Dictionary: 11th

edition revised 2008 . [Online] [Cited: 25 02 2020.]

https://www.amazon.co.uk/Concise-Oxford-English-Dictionary-

revised/dp/0199548412.

101. Hearing lips and seeing voices. McGurk, H., MacDonald. 1976,

Nature, Vol. 264, pp. 746-748.

102. Confusability of phonemes grouped according to their viseme

classes in noisy environments. Lucey, P., Martin, T., Sirdharn. 2004,

Proc. of Australian Int. Conf. on Speech Science & Tech, pp. 265-270.

103. Unsupervised random forest manifold alignment for lipreading. Pei,

Y., Kim, T.K., Zha, H. 2013, Proceedings of the IEEE International

Conference on Computer Vision, pp. 129-136.

104. The 1994 htk large vocabulary speech recognition system. In:

Acoustics, Speech, and Signal Processing, . Woodland, P.C., Leggetter,

C., Odell, J., Valtchev, V., Young, S.J. 1995 , ICASSP-95., International

Conference on 1995.

105. An analysis of incorporating an external language model into a

sequence-to-sequence model. A. Kannan, Y. Wu, P. Nguyen, T. N.

Sainath, Z. Chen, and R. Prabhavalkar. 2017.

106. Andrew Zisserman and Joon Son Chung Visual Geometry Group,

Department of Engineering Science, University of Oxford. Out of time:

automated lip sync in the wild. [Online] 2016. [Cited: 01 03 2020.]

https://www.robots.ox.ac.uk/~vgg/publications/2016/Chung16a/chun

g16a.pdf.

107. Chung, J.~S. and Zisserman, A. SyncNet. [Online] Github, 2016.

[Cited: 01 03 2020.] https://github.com/joonson/syncnet_python.

108. MODALITY corpus. [Online] Multimedia Systems Department of

Gdansk University of Technology, 2020. [Cited: 01 03 2020.]

http://www.modality-corpus.org/.

109. youtube-dl. [Online] youtube-dl developers, 2020. [Cited: 03 03

2020.] https://ytdl-org.github.io/youtube-

dl/supportedsites.html?fbclid=IwAR1wXIShygG8X7zrw3fqyl_NiBaG3Y

T_orORFutCTuNaXVKo-Sx3AquvTRQ.

65

110. Joshua Y. Kim1, Chunfeng Liu1, Rafael A. Calvo1*, Kathryn

McCabe2,Silas C. R. Taylor3, Björn W. Schuller4, Kaihang Wu. A

Comparison of Online Automatic Speech Recognition Systemsand the

Nonverbal Responses to Unintelligible Speech. s.l. : Universityof Sydney,

Faculty of Engineering and Information Technologies2 University of

California, Davis, Psychiatry and Behavioral Sciences3 University of

New South Wales, Faculty of Medicine4 Imperial College London,

Department of Computing, 2019.

111. Hassanat, Ahmad Basheer. Visual Words for Automatic LipReading .

Department of Applied Computing , University of Buckingham United

Kingdom . 2009.

112. Study of Influence of Word Lip Reading by Change of Frame Rate.

Takeshi Saitoh1, Ryosuke Konishi. 2010. International Conferenceon

Audio-Visual Speech ProcessingHakone, Kanagawa, Japan.

113. Kamoun, Emna. Image Registration: From SIFT to Deep Learning.

[Online] SICARA, 16 Jul 2019. [Cited: 26 04 2020.]

https://medium.com/sicara/image-registration-sift-deep-learning-

3c794d794b7a.

114. 111+ Linux Statistics and Facts – Linux Rocks! [Online]

hostingtribunal. https://hostingtribunal.com/blog/linux-statistics/.

